High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
- URL: http://arxiv.org/abs/2504.17203v1
- Date: Thu, 24 Apr 2025 02:27:17 GMT
- Title: High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
- Authors: Shivasankari Kannan, Yeounoh Chung, Amita Gondi, Tristan Swadell, Fatma Ozcan,
- Abstract summary: The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted.<n>Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures.<n>We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data.
- Score: 0.9067668231347065
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically ``meaningful'' mock data for complex schema that includes columns with nested structures that we frequently encounter in Google SQL code generation workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex schema, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the test targets (SQL queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant services. Our results demonstrate the practical utility of an out-of-the-box LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating realistic test data is essential due to the frequent unavailability of production datasets.
Related papers
- HI-SQL: Optimizing Text-to-SQL Systems through Dynamic Hint Integration [1.3927943269211591]
Text-to-generation bridges the gap between natural language and databases, enabling users to query data without requiringsql expertise.<n>We propose HI-the, a pipeline that incorporates a novel hint generation mechanism utilizing historical query logs.<n>By analyzing prior queries, our method generates contextual hints that focus on handling the complexities of multi-table and nested operations.<n>Our approach significantly improves query accuracy of LLM-generated queries while ensuring efficiency in terms of calls and latency.
arXiv Detail & Related papers (2025-06-11T12:07:55Z) - Enhancing Accuracy and Maintainability in Nuclear Plant Data Retrieval: A Function-Calling LLM Approach Over NL-to-SQL [0.0]
Retrieving operational data from nuclear power plants requires exceptional accuracy and transparency due to the criticality of the decisions it supports.<n>Traditionally, natural language to SQL (NL-to-) approaches have been explored for querying such data.<n>We propose an alternative paradigm: leveraging function-calling large language models (LLMs) to address these challenges.
arXiv Detail & Related papers (2025-06-10T12:55:07Z) - TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research [0.0]
We propose text-to-generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity.<n>We apply interpretability techniques, including Edge Patching and Sparse Autoencoders, to identify minimal circuits.<n>Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
arXiv Detail & Related papers (2025-03-17T01:47:50Z) - LLM-TabFlow: Synthetic Tabular Data Generation with Inter-column Logical Relationship Preservation [49.898152180805454]
This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation.<n>LLM-TabFlow is a novel approach that captures complex inter-column relationships and compress data, while using Score-based Diffusion to model the distribution of the compressed data in latent space.<n>Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy.
arXiv Detail & Related papers (2025-03-04T00:47:52Z) - Text-to-SQL Domain Adaptation via Human-LLM Collaborative Data Annotation [26.834687657847454]
Text-to-sql models are increasingly adopted in real-world applications.
deploying such models in the real world often requires adapting them to the highly specialized database schemas used in specific applications.
We find that existing text-to-sql models experience significant performance drops when applied to new schemas.
Continuously obtaining high-quality text-to-sql data for evolving schemas is prohibitively expensive in real-world scenarios.
arXiv Detail & Related papers (2025-02-21T22:32:35Z) - Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
We introduce the Text-to-No task, which aims to convert natural language queries into accessible queries.<n>To promote research in this area, we released a large-scale and open-source dataset for this task, named TEND (short interfaces for Text-to-No dataset)<n>We also designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-No conversion.
arXiv Detail & Related papers (2025-02-16T17:01:48Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [49.170195362149386]
We introduce a novel feature tree-based synthesis framework inspired by Abstract Syntax Trees (AST)<n>Unlike AST, which captures syntactic structure of code, our framework models semantic relationships between code elements.<n>We fine-tuned widely-used base models to create the EpiCoder series, achieving state-of-the-art performance at both the function and file levels.
arXiv Detail & Related papers (2025-01-08T18:58:15Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-s enables non-expert users to effortlessly retrieve desired information from databases using natural language queries.
Current state-of-the-art (SOTA) models like GPT4 and T5 have shown impressive performance on large-scale benchmarks like BIRD.
This paper proposed a novel approach that only needs SQL Quality to enhance Text-to-s performance.
arXiv Detail & Related papers (2024-10-02T17:21:51Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to- tasks.
We introduce a synthetic data approach that combines data produced by larger, more powerful models with error information data generated by smaller, not well-aligned models.
arXiv Detail & Related papers (2024-08-06T15:40:32Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
We introduce CHESS, a framework for efficient and scalable text-to- queries.
It comprises four specialized agents, each targeting one of the aforementioned challenges.
Our framework offers features that adapt to various deployment constraints.
arXiv Detail & Related papers (2024-05-27T01:54:16Z) - CodeS: Towards Building Open-source Language Models for Text-to-SQL [42.11113113574589]
We introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B.
CodeS is a fully open language model, which achieves superior accuracy with much smaller parameter sizes.
We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark.
arXiv Detail & Related papers (2024-02-26T07:00:58Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - On the Structural Generalization in Text-to-SQL [36.56043090037171]
We study the structure variety of database schema(DS).
We propose a framework to generate novel text-to- structural data.
Significant performance reduction when evaluating well-trained text-to- models on the synthetic samples.
arXiv Detail & Related papers (2023-01-12T02:52:51Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
State-of-the-art text-to-weighted algorithms did not further improve on popular benchmarks when trained with augmented synthetic data.
We propose a novel framework that incorporates key relationships from schema, imposes strong typing, and schema-weighted column sampling.
arXiv Detail & Related papers (2022-12-17T02:53:21Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
This paper aims to improve the performance of text-to-dependence by exploring the intrinsic uncertainties in the neural network based approaches (called SUN)
Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms competitors and achieves new state-of-the-art results.
arXiv Detail & Related papers (2022-09-14T06:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.