TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
- URL: http://arxiv.org/abs/2504.17365v3
- Date: Tue, 29 Apr 2025 01:53:09 GMT
- Title: TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
- Authors: Ling You, Wenxuan Huang, Xinni Xie, Xiangyi Wei, Bangyan Li, Shaohui Lin, Yang Li, Changbo Wang,
- Abstract summary: TimeSoccer is the first end-to-end soccer MLLM for Single-anchor Video Captioning (SDVC) in full-match soccer videos.<n>TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling.<n>MoFA-Select is a training-free, motion-aware frame compression module that adaptively selects representative frames.
- Score: 13.835968474349034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
Related papers
- Towards Universal Soccer Video Understanding [58.889409980618396]
This paper aims to a comprehensive multi-modal framework for soccer understanding.<n>We introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1, complete matches.<n>We present an advanced soccer-specific visual, MatchVision, which leveragestemporal information across soccer videos and excels in various downstream tasks.
arXiv Detail & Related papers (2024-12-02T18:58:04Z) - Training-free Video Temporal Grounding using Large-scale Pre-trained Models [41.71055776623368]
Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query.
Existing video temporal localization models rely on specific datasets for training and have high data collection costs.
We propose a Training-Free Video Temporal Grounding approach that leverages the ability of pre-trained large models.
arXiv Detail & Related papers (2024-08-29T02:25:12Z) - Chrono: A Simple Blueprint for Representing Time in MLLMs [34.036784478999245]
We investigate the challenge of contextual and temporal comprehension in video-language models by exploring the task of temporal localization in videos.<n>We introduce Chrono, a universal sequence blueprint that can be applied to an image-text pretrained MLLM.<n>We achieve a new SOTA in moment retrieval on the most widely used benchmarks Charades-STA, QVHighlights, ActivityNet Captions, and grounded video question answering on NeXT-GQA.
arXiv Detail & Related papers (2024-06-26T06:59:09Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
We propose a Temporal-Aware video-language pre-training framework, HiTeA, for modeling cross-modal alignment between moments and texts.
We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks.
arXiv Detail & Related papers (2022-12-30T04:27:01Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
We present HERO, a novel framework for large-scale video+language omni-representation learning.
HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer.
HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions.
arXiv Detail & Related papers (2020-05-01T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.