Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
- URL: http://arxiv.org/abs/2504.17397v1
- Date: Thu, 24 Apr 2025 09:37:02 GMT
- Title: Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
- Authors: Francesc Marti-Escofet, Benedikt Blumenstiel, Linus Scheibenreif, Paolo Fraccaro, Konrad Schindler,
- Abstract summary: Earth observation is crucial for monitoring environmental changes, responding to disasters, and managing natural resources.<n>Foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently.<n>As these models grow in size, fine-tuning becomes increasingly challenging due to associated computational resources and costs.
- Score: 16.522696273752835
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.
Related papers
- A Survey on Parameter-Efficient Fine-Tuning for Foundation Models in Federated Learning [5.280048850098648]
Foundation models have revolutionized artificial intelligence by providing robust, versatile architectures pre-trained on large-scale datasets.
Adapting these massive models to specific downstream tasks requires fine-tuning, which can be prohibitively expensive in computational resources.
This survey provides a comprehensive review of the integration of PEFT techniques within federated learning environments.
arXiv Detail & Related papers (2025-04-29T18:18:39Z) - A Systematic Literature Review of Parameter-Efficient Fine-Tuning for Large Code Models [2.171120568435925]
Large Language Models (LLMs) for code require significant computational resources for training and fine-tuning.
To address this, the research community has increasingly turned to Efficient Fine-Tuning (PEFT)
PEFT enables the adaptation of large models by updating only a small subset of parameters, rather than the entire model.
Our study synthesizes findings from 27 peer-reviewed papers, identifying patterns in configuration strategies and adaptation trade-offs.
arXiv Detail & Related papers (2025-04-29T16:19:25Z) - PEFT A2Z: Parameter-Efficient Fine-Tuning Survey for Large Language and Vision Models [0.0]
Large models such as Large Language Models (LLMs) and Vision Language Models (VLMs) have transformed artificial intelligence.<n>Fine-tuning these models remains expensive, requiring extensive computational resources, memory, and task-specific data.<n>Efficient Fine-Tuning (PEFT) has emerged as a promising solution that allows adapting large models to downstream tasks by updating only a small portion of parameters.
arXiv Detail & Related papers (2025-04-19T00:33:16Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.<n>Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.<n>We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
We propose a gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation.
We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data.
arXiv Detail & Related papers (2020-04-06T11:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.