Classical Estimation of the Free Energy and Quantum Gibbs Sampling from the Markov Entropy Decomposition
- URL: http://arxiv.org/abs/2504.17405v1
- Date: Thu, 24 Apr 2025 09:53:53 GMT
- Title: Classical Estimation of the Free Energy and Quantum Gibbs Sampling from the Markov Entropy Decomposition
- Authors: Samuel O. Scalet, Angela Capel, Anirban N. Chowdhury, Hamza Fawzi, Omar Fawzi, Isaac H. Kim, Arkin Tikku,
- Abstract summary: We revisit the Markov Entropy Decomposition to approximate the free energy in quantum spin lattices.<n>We prove that this condition is satisfied for systems in 1D at any temperature as well as in the high-temperature regime under certain commutativity.<n>We then use this fact to devise a rounding scheme that maps the solution of the convex relaxation to a global state and show that the scheme can be efficiently implemented on a quantum computer.
- Score: 8.0411799613087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the Markov Entropy Decomposition, a classical convex relaxation algorithm introduced by Poulin and Hastings to approximate the free energy in quantum spin lattices. We identify a sufficient condition for its convergence, namely the decay of the effective interaction. We prove that this condition is satisfied for systems in 1D at any temperature as well as in the high-temperature regime under a certain commutativity condition on the Hamiltonian. This yields polynomial and quasi-polynomial time approximation algorithms in these settings, respectively. Furthermore, the decay of the effective interaction implies the decay of the conditional mutual information for the Gibbs state of the system. We then use this fact to devise a rounding scheme that maps the solution of the convex relaxation to a global state and show that the scheme can be efficiently implemented on a quantum computer, thus proving efficiency of quantum Gibbs sampling under our assumption of decay of the effective interaction.
Related papers
- Quasi-optimal sampling from Gibbs states via non-commutative optimal transport metrics [1.5999407512883517]
We study the problem of sampling from and preparing quantum Gibbs states of local commuting Hamiltonians on hypercubic lattices of arbitrary dimension.<n>We prove that any such Gibbs state which satisfies a clustering condition that we coin decay of matrix-valued quantum conditional mutual information can be quasi-optimally prepared on a quantum computer.
arXiv Detail & Related papers (2024-12-02T17:25:24Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Efficient thermalization and universal quantum computing with quantum Gibbs samplers [2.403252956256118]
We show adiabatic preparation of the associated "thermofield double" states.
We show implementing this family of dissipative evolutions for inverse temperatures in the system's size is computationally equivalent to standard quantum computations.
Taken together, our results show that a family of quasi-local dissipative evolution efficiently prepares a large class of quantum many-body states.
arXiv Detail & Related papers (2024-03-19T12:49:25Z) - Quantum Langevin Dynamics for Optimization [14.447963674485132]
We utilize Quantum Langevin Dynamics (QLD) to solve optimization problems.<n>Specifically, we examine the dynamics of a system coupled with an infinite heat bath.<n>We demonstrate that the average energy of the system can approach zero in the low temperature limit.
arXiv Detail & Related papers (2023-11-27T07:25:47Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Apparent pathologies in stochastic entropy production in the
thermalisation of an open two-level quantum system [0.0]
We investigate the entropic consequences of the relaxation of an open two-level quantum system towards a thermalised statistical state.
We demonstrate that thermalisation starting from a general state is accompanied by a persistent non-zero mean rate of change of the environmental component of entropy production.
arXiv Detail & Related papers (2023-03-07T11:34:46Z) - Taming Quantum Noise for Efficient Low Temperature Simulations of Open
Quantum Systems [4.866728358750297]
We introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles equivalent to an optimized rational decomposition.
This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy and long-time stability.
As one highly non-trivial application, for the sub-ohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.
arXiv Detail & Related papers (2022-02-08T18:46:11Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Strong coupling effects in quantum thermal transport with the reaction
coordinate method [0.0]
We present a semi-analytical approach for studying quantum thermal energy transport beyond the weak system-bath coupling regime.
In our technique, applied to the nonequilibrium spin-boson model, a collective coordinate is extracted from each environment and added into the system to construct an enlarged system.
We demonstrate that we properly capture strong system-bath signatures such as the turnover behavior of the heat current as a function of system-bath coupling strength.
arXiv Detail & Related papers (2021-03-09T19:15:56Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.