論文の概要: Goal-Oriented Time-Series Forecasting: Foundation Framework Design
- arxiv url: http://arxiv.org/abs/2504.17493v1
- Date: Thu, 24 Apr 2025 12:34:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.358643
- Title: Goal-Oriented Time-Series Forecasting: Foundation Framework Design
- Title(参考訳): Goal-Oriented Time-Series Forecasting: Foundation Framework Design
- Authors: Luca-Andrei Fechete, Mohamed Sana, Fadhel Ayed, Nicola Piovesan, Wenjie Li, Antonio De Domenico, Tareq Si Salem,
- Abstract要約: 時系列予測は、しばしば、現実のアプリケーションの特定の要求を無視して、予測エラーを最小限にすることだけに焦点を当てる。
本稿では、エンドアプリケーションで特定される予測範囲の重要性に基づいて、予測モデルがフォーカスを動的に調整できる新しいトレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 11.999600538978044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts. We tested our method on standard datasets, including a new dataset from wireless communication, and found that not only it improves prediction accuracy but also improves the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
- Abstract(参考訳): 伝統的な時系列予測は、しばしば予測エラーを最小化することだけに焦点を当て、それらを利用する現実世界のアプリケーションの特定の要件を無視している。
本稿では、エンドアプリケーションで特定される予測範囲の重要性に基づいて、予測モデルが集中度を動的に調整できる新しいトレーニング手法を提案する。
これらの範囲を事前に修正する従来の方法とは異なり、我々のトレーニング手法は信号範囲全体の予測を小さなセグメントに分割し、それを動的に重み付けして正確な予測を生成する。
提案手法は,無線通信による新しいデータセットを含む標準データセット上でテストし,予測精度の向上だけでなく,予測モデルを用いたエンドアプリケーションの性能向上も確認した。
本研究は,様々な応用において,予測と意思決定をよりうまく結びつける予測システムを構築するための基盤を提供する。
関連論文リスト
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - Deconfounding Time Series Forecasting [1.5967186772129907]
時系列予測は様々な領域において重要な課題であり、正確な予測は情報的な意思決定を促進する。
従来の予測手法は、しばしば将来の結果を予測するために変数の現在の観測に依存している。
本稿では,過去のデータから得られた潜在的共同設立者の表現を取り入れた予測手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T12:45:42Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では,予測符号化にインスパイアされた動的フィードバック機構を通じて時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
本手法は2つのモデルから構成される: 重要事象を識別するために将来のデータを解析する検出モデルと、これらの事象を現在のデータに基づいて予測する予測モデルである。
脳波データを用いた発作予測ではAUC-ROCが44.8%増加し,非線形力学系ではMSEが48.7%減少した。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing [16.824262496666893]
大規模データを用いた基礎モデルの事前学習のための強力なパラダイムとして,自己教師型学習が登場している。
条件生成タスクとして予測をモデル化する新しい事前学習タスクであるCausally Informed Variable-Step Forecasting (CI-VSF)を提案する。
このような事前学習は,予測と予測の両方に微調整を施すと,性能が向上することを示す。
論文 参考訳(メタデータ) (2024-07-29T02:49:55Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - ForecastPFN: Synthetically-Trained Zero-Shot Forecasting [16.12148632541671]
ForecastPFNは、新しい合成データ分布に基づいて純粋に訓練された最初のゼロショット予測モデルである。
ForecastPFNによるゼロショット予測は、最先端の予測手法よりも正確で高速であることを示す。
論文 参考訳(メタデータ) (2023-11-03T14:17:11Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Challenges and approaches to time-series forecasting in data center
telemetry: A Survey [0.0]
この研究は、データセンターで収集されたテレメトリデータ予測のための様々な予測アプローチのレビューに重点を置いている。
我々は、よく知られた時系列予測技術の性能を要約し、評価しようと試みた。
論文 参考訳(メタデータ) (2021-01-11T22:36:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。