Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
- URL: http://arxiv.org/abs/2504.17534v1
- Date: Thu, 24 Apr 2025 13:20:32 GMT
- Title: Learning Isometric Embeddings of Road Networks using Multidimensional Scaling
- Authors: Juan Carlos Climent Pardo,
- Abstract summary: The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover.<n>This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged.<n>The option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The lack of generalization in learning-based autonomous driving applications is shown by the narrow range of road scenarios that vehicles can currently cover. A generalizable approach should capture many distinct road structures and topologies, as well as consider traffic participants, and dynamic changes in the environment, so that vehicles can navigate and perform motion planning tasks even in the most difficult situations. Designing suitable feature spaces for neural network-based motion planers that encapsulate all kinds of road scenarios is still an open research challenge. This paper tackles this learning-based generalization challenge and shows how graph representations of road networks can be leveraged by using multidimensional scaling (MDS) techniques in order to obtain such feature spaces. State-of-the-art graph representations and MDS approaches are analyzed for the autonomous driving use case. Finally, the option of embedding graph nodes is discussed in order to perform easier learning procedures and obtain dimensionality reduction.
Related papers
- Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management [0.5161531917413708]
We build upon a previously presented graph-based scene representation and graph neural network to approach the problem using reinforcement learning.
The paper provides an in-depth evaluation of the proposed method against baselines that are commonly used in automatic intersection management.
arXiv Detail & Related papers (2022-07-18T14:53:50Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Context-Aware Scene Prediction Network (CASPNet) [3.390468002706074]
We jointly learn and predict the motion of all road users in a scene using a novel convolutional neural network (CNN) and recurrent neural network (RNN) based architecture.
Our approach reaches state-of-the-art results in the prediction benchmark.
arXiv Detail & Related papers (2022-01-18T12:52:01Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Neural Motion Planning for Autonomous Parking [6.1805402105389895]
This paper presents a hybrid motion planning strategy that combines a deep generative network with a conventional motion planning method.
The proposed method effectively learns the representations of a given state, and shows improvement in terms of algorithm performance.
arXiv Detail & Related papers (2021-11-12T14:29:38Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Optimal Solving of Constrained Path-Planning Problems with Graph
Convolutional Networks and Optimized Tree Search [12.457788665461312]
We propose a hybrid solving planner that combines machine learning models and an optimal solver.
We conduct experiments on realistic scenarios and show that GCN support enables substantial speedup and smoother scaling to harder problems.
arXiv Detail & Related papers (2021-08-02T16:53:21Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.