When Gaussian Meets Surfel: Ultra-fast High-fidelity Radiance Field Rendering
- URL: http://arxiv.org/abs/2504.17545v1
- Date: Thu, 24 Apr 2025 13:32:58 GMT
- Title: When Gaussian Meets Surfel: Ultra-fast High-fidelity Radiance Field Rendering
- Authors: Keyang Ye, Tianjia Shao, Kun Zhou,
- Abstract summary: 2D opaque surfels with view-dependent colors represent the coarse-scale geometry and appearance of scenes.<n>The entirely sorting-free rendering of GESs achieves very fast rates, but also produces view-consistent images.<n>GESs advance the state-of-the-arts as a compelling representation for ultra-fast high-fidelity radiance field rendering.
- Score: 33.37225825828824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Gaussian-enhanced Surfels (GESs), a bi-scale representation for radiance field rendering, wherein a set of 2D opaque surfels with view-dependent colors represent the coarse-scale geometry and appearance of scenes, and a few 3D Gaussians surrounding the surfels supplement fine-scale appearance details. The rendering with GESs consists of two passes -- surfels are first rasterized through a standard graphics pipeline to produce depth and color maps, and then Gaussians are splatted with depth testing and color accumulation on each pixel order independently. The optimization of GESs from multi-view images is performed through an elaborate coarse-to-fine procedure, faithfully capturing rich scene appearance. The entirely sorting-free rendering of GESs not only achieves very fast rates, but also produces view-consistent images, successfully avoiding popping artifacts under view changes. The basic GES representation can be easily extended to achieve anti-aliasing in rendering (Mip-GES), boosted rendering speeds (Speedy-GES) and compact storage (Compact-GES), and reconstruct better scene geometries by replacing 3D Gaussians with 2D Gaussians (2D-GES). Experimental results show that GESs advance the state-of-the-arts as a compelling representation for ultra-fast high-fidelity radiance field rendering.
Related papers
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - GlossGau: Efficient Inverse Rendering for Glossy Surface with Anisotropic Spherical Gaussian [4.5442067197725]
GlossGau is an efficient inverse rendering framework that reconstructs scenes with glossy surfaces while maintaining training and rendering speeds comparable to vanilla 3D-GS.<n> Experiments demonstrate that GlossGau achieves competitive or superior reconstruction on datasets with glossy surfaces.
arXiv Detail & Related papers (2025-02-19T22:20:57Z) - Gaussian Billboards: Expressive 2D Gaussian Splatting with Textures [8.724367699416893]
We highlight the similarity between 2D Gaussian Splatting (2DGS) and billboards from traditional computer graphics.<n>We propose a modification of 2DGS to add spatially-varying color achieved using per-splat texture.<n>We show that our method can improve the sharpness and quality of the scene representation in a wide range of qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-12-17T09:57:04Z) - HDGS: Textured 2D Gaussian Splatting for Enhanced Scene Rendering [43.58008082519209]
We propose a novel method to align the 2D surfels with texture maps and augment it with per-ray depth sorting and fisher-based pruning for rendering consistency and efficiency.<n>With correct order, per-surfel texture maps significantly improve the capabilities to capture fine details.<n>To render high-fidelity details in varying viewpoints, we designed a frustum-based sampling method to mitigate the aliasing artifacts.
arXiv Detail & Related papers (2024-12-02T18:59:09Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.<n>We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.<n>We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
We introduce a novel approach to creating ultra-realistic head avatars and rendering them in real-time.<n> UV-mapped 3D mesh is utilized to capture sharp and rich textures on smooth surfaces, while 3D Gaussian Splatting is employed to represent complex geometric structures.<n>Experiments that our modeled results exceed those of state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.