Anti-Aliased 2D Gaussian Splatting
- URL: http://arxiv.org/abs/2506.11252v1
- Date: Thu, 12 Jun 2025 19:49:57 GMT
- Title: Anti-Aliased 2D Gaussian Splatting
- Authors: Mae Younes, Adnane Boukhayma,
- Abstract summary: 2D Gaussian Splatting (2DGS) has emerged as a promising method for novel view synthesis and surface reconstruction.<n>2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training.<n>We present AA-2DGS, an antialiased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing quality rendering across different scales.
- Score: 6.430258446597413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 2D Gaussian Splatting (2DGS) has recently emerged as a promising method for novel view synthesis and surface reconstruction, offering better view-consistency and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training, limiting its practical applications in scenarios requiring camera zoom or varying fields of view. We identify that these artifacts stem from two key limitations: the lack of frequency constraints in the representation and an ineffective screen-space clamping approach. To address these issues, we present AA-2DGS, an antialiased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing rendering quality across different scales. Our method introduces a world space flat smoothing kernel that constrains the frequency content of 2D Gaussian primitives based on the maximal sampling frequency from training views, effectively eliminating high-frequency artifacts when zooming in. Additionally, we derive a novel object space Mip filter by leveraging an affine approximation of the ray-splat intersection mapping, which allows us to efficiently apply proper anti-aliasing directly in the local space of each splat.
Related papers
- GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction [51.99776072246151]
We propose a novel reconstruction method called GS-2DGS for reflective objects based on 2D Gaussian Splatting (2DGS)<n> Experimental results on synthetic and real datasets demonstrate that our method significantly outperforms Gaussian-based techniques in terms of reconstruction and relighting.
arXiv Detail & Related papers (2025-06-16T05:40:16Z) - LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering [68.93333348474988]
We present a novel level-of-detail (LOD) method for 3D Gaussian Splatting on memory-constrained devices.<n>Our approach iteratively selects optimal subsets of Gaussians based on camera distance.<n>Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets.
arXiv Detail & Related papers (2025-05-29T06:50:57Z) - AAA-Gaussians: Anti-Aliased and Artifact-Free 3D Gaussian Rendering [8.972911362220803]
We introduce an adaptive 3D smoothing filter to mitigate aliasing and present a stable view-space bounding method.<n>Our evaluations further demonstrate the effective removal of aliasing, distortions, and popping artifacts, ensuring real-time, artifact-free rendering.
arXiv Detail & Related papers (2025-04-17T10:16:47Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.<n>In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.<n> Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction [11.840097269724792]
3D Gaussian Splatting (3DGS) has emerged as a promising approach for 3D scene representation, offering a reduction in computational overhead compared to Neural Radiance Fields (NeRF)
We introduce SVS-GS, a novel framework for Sparse Viewpoint Scene reconstruction that integrates a 3D Gaussian smoothing filter to suppress artifacts.
arXiv Detail & Related papers (2024-09-05T03:18:04Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.<n>We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.<n>We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Mip-Splatting: Alias-free 3D Gaussian Splatting [52.366815964832426]
3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency.
Strong artifacts can be observed when changing the sampling rate, eg, by changing focal length or camera distance.
We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter.
arXiv Detail & Related papers (2023-11-27T13:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.