論文の概要: HalluLens: LLM Hallucination Benchmark
- arxiv url: http://arxiv.org/abs/2504.17550v1
- Date: Thu, 24 Apr 2025 13:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.389083
- Title: HalluLens: LLM Hallucination Benchmark
- Title(参考訳): HalluLens: LLM 幻覚ベンチマーク
- Authors: Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola Cancedda, Pascale Fung,
- Abstract要約: 大規模言語モデル(LLM)は、しばしばユーザ入力やトレーニングデータから逸脱する応答を生成する。
本稿では,新たな内因性評価タスクと既存内因性評価タスクを併用した総合幻覚ベンチマークを提案する。
- 参考スコア(独自算出の注目度): 49.170128733508335
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
- Abstract(参考訳): 大規模言語モデル(LLM)は、しばしばユーザ入力やトレーニングデータから逸脱する応答を生成する。
これらの幻覚は、ユーザの信頼を損なうとともに、生成AIシステムの採用を妨げる。
LLMの進行には幻覚への対処が不可欠である。
本稿では,幻覚の明確な分類に基づく,新たな外因性評価タスクと既存の内因性評価タスクを併用した総合幻覚ベンチマークを提案する。
幻覚のベンチマークにおける大きな課題は、一貫性のない定義と分類による統一されたフレームワークの欠如である。
我々はLLM幻覚を「事実性」から切り離し、外因性幻覚と内因性幻覚を区別する明確な分類法を提案し、一貫性を促進し研究を促進する。
生成したコンテンツがトレーニングデータと一致しない外部幻覚は、LSMが進化するにつれてますます重要になる。
我々のベンチマークには、データ漏洩を軽減し、そのようなリークに対して堅牢性を確保するための動的テストセット生成が含まれている。
また、既存のベンチマークを分析し、その制限と飽和を強調します。
本研究の目的は,(1) 幻覚の明確な分類を確立し,(2) 漏洩による飽和を防止するために動的に再生可能なデータを用いて,新たな外因性幻覚タスクを導入すること,(3) 既存のベンチマークを総合的に分析し,事実性評価と区別することである。
関連論文リスト
- Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models [0.0]
大規模言語モデル(LLM)における幻覚は、現実世界のアプリケーションにまたがる課題が増えていることを示している。
幻覚を系統的に引き起こし定量化するプロンプトベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-01T14:33:47Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
VLM(Vision-Language Models)は視覚的理解に優れ、視覚幻覚に悩まされることが多い。
本研究では,幻覚を意識したトレーニングとオンザフライの自己検証を統合した統合フレームワークREVERSEを紹介する。
論文 参考訳(メタデータ) (2025-04-17T17:59:22Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
我々は2万以上の実世界のサンプルからなる関係幻覚を対象とする総合的なベンチマークであるReefknotを紹介した。
関係幻覚を体系的に定義し、知覚的視点と認知的視点を統合するとともに、Visual Genomeのシーングラフデータセットを用いて関係ベースのコーパスを構築する。
本稿では,Reefknotを含む3つのデータセットに対して,幻覚率を平均9.75%削減する信頼性に基づく新たな緩和戦略を提案する。
論文 参考訳(メタデータ) (2024-08-18T10:07:02Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
大規模言語モデル(LM)は、しばしば幻覚と呼ばれる事実的誤りを引き起こす傾向にある。
我々は,幻覚の包括的分類を導入し,幻覚が多様な形態で現れることを議論する。
本稿では, 幻覚自動検出のための新しいタスクを提案し, 新たな評価ベンチマークであるFavaBenchを構築した。
論文 参考訳(メタデータ) (2024-01-12T19:02:48Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。