Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
- URL: http://arxiv.org/abs/2504.17551v1
- Date: Thu, 24 Apr 2025 13:41:27 GMT
- Title: Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
- Authors: Lin Che, Yizi Chen, Tanhua Jin, Martin Raubal, Konrad Schindler, Peter Kiefer,
- Abstract summary: This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior.<n>We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities.
- Score: 16.334202302817783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
Related papers
- Horizon-GS: Unified 3D Gaussian Splatting for Large-Scale Aerial-to-Ground Scenes [55.15494682493422]
We introduce Horizon-GS, a novel approach built upon Gaussian Splatting techniques, to tackle the unified reconstruction and rendering for aerial and street views.<n>Our method addresses the key challenges of combining these perspectives with a new training strategy, overcoming viewpoint discrepancies to generate high-fidelity scenes.
arXiv Detail & Related papers (2024-12-02T17:42:00Z) - AerialGo: Walking-through City View Generation from Aerial Perspectives [48.53976414257845]
AerialGo is a framework that generates realistic walking-through city views from aerial images.<n>By conditioning ground-view synthesis on accessible aerial data, AerialGo bypasses the privacy risks inherent in ground-level imagery.<n>Experiments show that AerialGo significantly enhances ground-level realism and structural coherence.
arXiv Detail & Related papers (2024-11-29T08:14:07Z) - StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model [12.789465279993864]
Geospatial predictions are crucial for diverse fields such as disaster management, urban planning, and public health.
We propose StreetViewLLM, a novel framework that integrates a large language model with the chain-of-thought reasoning and multimodal data sources.
The model has been applied to seven global cities, including Hong Kong, Tokyo, Singapore, Los Angeles, New York, London, and Paris.
arXiv Detail & Related papers (2024-11-19T05:15:19Z) - StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGS is first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction.
StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability.
To address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information.
arXiv Detail & Related papers (2024-10-06T04:21:59Z) - Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images [0.0]
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning.
This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images.
We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data.
arXiv Detail & Related papers (2024-08-05T11:14:23Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
We introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels.
We achieve state of the art street level accuracy on 4 standard geo-localization datasets.
arXiv Detail & Related papers (2023-03-07T21:47:58Z) - Mitigating Urban-Rural Disparities in Contrastive Representation Learning with Satellite Imagery [19.93324644519412]
We consider the risk of urban-rural disparities in identification of land-cover features.
We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of convolution neural network models.
The obtained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images.
arXiv Detail & Related papers (2022-11-16T04:59:46Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - FloorLevel-Net: Recognizing Floor-Level Lines with
Height-Attention-Guided Multi-task Learning [49.30194762653723]
This work tackles the problem of locating floor-level lines in street-view images, using a supervised deep learning approach.
We first compile a new dataset and develop a new data augmentation scheme to synthesize training samples.
Next, we design FloorLevel-Net, a multi-task learning network that associates explicit features of building facades and implicit floor-level lines.
arXiv Detail & Related papers (2021-07-06T08:17:59Z) - Urban land-use analysis using proximate sensing imagery: a survey [3.79474411753363]
Studies leveraging proximate sensing imagery have demonstrated great potential to address the need for local data in urban land-use analysis.
This paper reviews and summarizes the state-of-the-art methods and publicly available datasets from proximate sensing to support land-use analysis.
arXiv Detail & Related papers (2021-01-13T01:30:21Z) - Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal
Urban Neighborhood Embedding [8.396746290518102]
Urban2Vec is an unsupervised multi-modal framework which incorporates both street view imagery and point-of-interest data.
We show that Urban2Vec can achieve performances better than baseline models and comparable to fully-supervised methods in downstream prediction tasks.
arXiv Detail & Related papers (2020-01-29T21:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.