StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model
- URL: http://arxiv.org/abs/2411.14476v1
- Date: Tue, 19 Nov 2024 05:15:19 GMT
- Title: StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model
- Authors: Zongrong Li, Junhao Xu, Siqin Wang, Yifan Wu, Haiyang Li,
- Abstract summary: Geospatial predictions are crucial for diverse fields such as disaster management, urban planning, and public health.
We propose StreetViewLLM, a novel framework that integrates a large language model with the chain-of-thought reasoning and multimodal data sources.
The model has been applied to seven global cities, including Hong Kong, Tokyo, Singapore, Los Angeles, New York, London, and Paris.
- Score: 12.789465279993864
- License:
- Abstract: Geospatial predictions are crucial for diverse fields such as disaster management, urban planning, and public health. Traditional machine learning methods often face limitations when handling unstructured or multi-modal data like street view imagery. To address these challenges, we propose StreetViewLLM, a novel framework that integrates a large language model with the chain-of-thought reasoning and multimodal data sources. By combining street view imagery with geographic coordinates and textual data, StreetViewLLM improves the precision and granularity of geospatial predictions. Using retrieval-augmented generation techniques, our approach enhances geographic information extraction, enabling a detailed analysis of urban environments. The model has been applied to seven global cities, including Hong Kong, Tokyo, Singapore, Los Angeles, New York, London, and Paris, demonstrating superior performance in predicting urban indicators, including population density, accessibility to healthcare, normalized difference vegetation index, building height, and impervious surface. The results show that StreetViewLLM consistently outperforms baseline models, offering improved predictive accuracy and deeper insights into the built environment. This research opens new opportunities for integrating the large language model into urban analytics, decision-making in urban planning, infrastructure management, and environmental monitoring.
Related papers
- BuildingView: Constructing Urban Building Exteriors Databases with Street View Imagery and Multimodal Large Language Mode [1.0937094979510213]
Building Exteriors are increasingly important in urban analytics, driven by advancements in Street View Imagery and its integration with urban research.
We propose BuildingView, a novel approach that integrates high-resolution visual data from Google Street View with spatial information from OpenStreetMap via the Overpass API.
This research improves the accuracy of urban building exterior data, identifies key sustainability and design indicators, and develops a framework for their extraction and categorization.
arXiv Detail & Related papers (2024-09-29T03:00:16Z) - ControlCity: A Multimodal Diffusion Model Based Approach for Accurate Geospatial Data Generation and Urban Morphology Analysis [6.600555803960957]
We propose a multi-source geographic data transformation solution, utilizing accessible and complete VGI data to assist in generating urban building footprint data.
We then present ControlCity, a geographic data transformation method based on a multimodal diffusion model.
Experiments across 22 global cities demonstrate that ControlCity successfully simulates real urban building patterns.
arXiv Detail & Related papers (2024-09-25T16:03:33Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
We propose heterogeneous urban graph attention network (HUGAT) for learning the representations of urban regions.
In our experiments on NYC data, HUGAT outperformed all the state-of-the-art models.
arXiv Detail & Related papers (2022-02-18T04:59:20Z) - GANs for Urban Design [0.0]
The topic investigated in this paper is the application of Generative Adversarial Networks to the design of an urban block.
The research presents a flexible model able to adapt to the morphological characteristics of a city.
arXiv Detail & Related papers (2021-05-04T19:50:24Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery.
By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health.
arXiv Detail & Related papers (2020-06-15T18:12:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.