論文の概要: Evaluating the Vulnerability of ML-Based Ethereum Phishing Detectors to Single-Feature Adversarial Perturbations
- arxiv url: http://arxiv.org/abs/2504.17684v1
- Date: Thu, 24 Apr 2025 15:54:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.448632
- Title: Evaluating the Vulnerability of ML-Based Ethereum Phishing Detectors to Single-Feature Adversarial Perturbations
- Title(参考訳): MLベースのEthereumフィッシング検出器の単機能対向摂動に対する脆弱性評価
- Authors: Ahod Alghuried, Ali Alkinoon, Abdulaziz Alghamdi, Soohyeon Choi, Manar Mohaisen, David Mohaisen,
- Abstract要約: 本稿では,不正取引検出の文脈において,単純な単一機能攻撃に対する機械学習モデルの脆弱性について検討する。
総合的な実験を通じて,様々な敵攻撃戦略がモデル性能指標に与える影響について検討する。
モデルロバスト性を向上し, その効果を示すために, 対戦訓練や特徴選択の強化など, 異なる緩和戦略の有効性を検討する。
- 参考スコア(独自算出の注目度): 9.362363409064546
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper explores the vulnerability of machine learning models to simple single-feature adversarial attacks in the context of Ethereum fraudulent transaction detection. Through comprehensive experimentation, we investigate the impact of various adversarial attack strategies on model performance metrics. Our findings, highlighting how prone those techniques are to simple attacks, are alarming, and the inconsistency in the attacks' effect on different algorithms promises ways for attack mitigation. We examine the effectiveness of different mitigation strategies, including adversarial training and enhanced feature selection, in enhancing model robustness and show their effectiveness.
- Abstract(参考訳): 本稿では,Ethereum不正取引検出の文脈において,単純な単一機能攻撃に対する機械学習モデルの脆弱性について検討する。
総合的な実験を通じて,様々な敵攻撃戦略がモデル性能指標に与える影響について検討する。
我々の発見は、これらのテクニックが単純な攻撃にどのように影響するかを強調し、異なるアルゴリズムに対する攻撃の効果の不整合は、攻撃を緩和する方法を約束する。
モデルロバスト性を向上し, その効果を示すために, 対戦訓練や特徴選択の強化など, 異なる緩和戦略の有効性を検討する。
関連論文リスト
- Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An Empirical Analysis [12.607077453567594]
精度,精度,リコール,F1スコアなどのモデル性能指標に対する各種敵攻撃戦略の影響について検討する。
モデルロバスト性を高めるために, 対戦訓練や特徴選択の強化など, 様々な緩和策の有効性を検討する。
論文 参考訳(メタデータ) (2024-08-06T20:40:20Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - Deviations in Representations Induced by Adversarial Attacks [0.0]
研究によると、ディープラーニングモデルは敵の攻撃に弱い。
この発見は研究の新たな方向性をもたらし、脆弱性のあるネットワークを攻撃して防御するためにアルゴリズムが開発された。
本稿では,敵攻撃によって引き起こされる表現の偏差を計測し,解析する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T17:40:08Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Poisoning Attacks on Algorithmic Fairness [14.213638219685656]
本稿では,アルゴリズムの公正性に対する攻撃を害する最適化フレームワークを提案する。
我々は,データ中の異なるグループ間の分類格差の導入を目的とした,勾配に基づく中毒攻撃を開発した。
我々の発見は、異なるシナリオにおけるアルゴリズムフェアネスをターゲットとした、全く新しい敵攻撃セットの定義への道を開いたと信じている。
論文 参考訳(メタデータ) (2020-04-15T08:07:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。