BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
- URL: http://arxiv.org/abs/2504.17693v1
- Date: Thu, 24 Apr 2025 16:02:02 GMT
- Title: BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
- Authors: Asier Bikandi, Muhammad Shaheer, Hriday Bavle, Jayan Jevanesan, Holger Voos, Jose Luis Sanchez-Lopez,
- Abstract summary: Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements.<n>However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation.<n>This paper proposes a BIM-aware drift correction method to address these challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements. However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation, leading to misalignment between digital models and the physical world. This paper proposes a BIM-aware drift correction method to address these challenges. Instead of relying solely on SLAM-based localization, we align ``as-built" detected planes from the real-world environment with ``as-planned" architectural planes in BIM. Our method performs robust plane matching and computes a transformation (TF) between SLAM (S) and BIM (B) origin frames using optimization techniques, minimizing drift over time. By incorporating BIM as prior structural knowledge, we can achieve improved long-term localization and enhanced AR visualization accuracy in noisy construction environments. The method is evaluated through real-world experiments, showing significant reductions in drift-induced errors and optimized alignment consistency. On average, our system achieves a reduction of 52.24% in angular deviations and a reduction of 60.8% in the distance error of the matched walls compared to the initial manual alignment by the user.
Related papers
- Deblur Gaussian Splatting SLAM [57.35366732452066]
Deblur-SLAM is a robust RGB SLAM pipeline designed to recover sharp reconstructions from motion-blurred inputs.<n>We model the physical image formation process of motion-blurred images and minimize the error between the observed blurry images and rendered blurry images.<n>We achieve state-of-the-art results for sharp map estimation and sub-frame trajectory recovery both on synthetic and real-world blurry input data.
arXiv Detail & Related papers (2025-03-16T16:59:51Z) - ROLO-SLAM: Rotation-Optimized LiDAR-Only SLAM in Uneven Terrain with Ground Vehicle [49.61982102900982]
A LiDAR-based SLAM method is presented to improve the accuracy of pose estimations for ground vehicles in rough terrains.
A global-scale factor graph is established to aid in the reduction of cumulative errors.
The results demonstrate that ROLO-SLAM excels in pose estimation of ground vehicles and outperforms existing state-of-the-art LiDAR SLAM frameworks.
arXiv Detail & Related papers (2025-01-04T02:44:27Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping [15.63276368052395]
We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM)
Existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms.
We implement both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution.
arXiv Detail & Related papers (2024-04-17T14:23:28Z) - AdaSfM: From Coarse Global to Fine Incremental Adaptive Structure from
Motion [48.835456049755166]
AdaSfM is a coarse-to-fine adaptive SfM approach that is scalable to large-scale and challenging datasets.
Our approach first does a coarse global SfM which improves the reliability of the view graph by leveraging measurements from low-cost sensors.
Our approach uses a threshold-adaptive strategy to align all local reconstructions to the coordinate frame of global SfM.
arXiv Detail & Related papers (2023-01-28T09:06:50Z) - Revisiting Rolling Shutter Bundle Adjustment: Toward Accurate and Fast
Solution [6.317266060165099]
We propose a robust and fast bundle adjustment solution that estimates the 6-DoF pose of the camera and the geometry of the environment based on measurements from a rolling shutter (RS) camera.
This tackles the challenges in the existing works, namely relying on additional sensors, high frame rate video as input, restrictive assumptions on camera motion, readout direction, and poor efficiency.
arXiv Detail & Related papers (2022-09-18T08:21:07Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Minimal Solvers for Indoor UAV Positioning [1.7149364927872015]
We consider a collection of relative pose problems which arise naturally in applications for visual indoor UAV navigation.
The solvers are designed for a partially calibrated camera, for a variety of realistic indoor scenarios.
We show that the proposed solvers enjoy better numerical stability, are faster, and require fewer point correspondences, compared to state-of-the-art solvers.
arXiv Detail & Related papers (2020-03-16T11:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.