DPMambaIR:All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
- URL: http://arxiv.org/abs/2504.17732v1
- Date: Thu, 24 Apr 2025 16:46:32 GMT
- Title: DPMambaIR:All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
- Authors: Zhanwen Liu, Sai Zhou, Yuchao Dai, Yang Wang, Yisheng An, Xiangmo Zhao,
- Abstract summary: All-in-One image restoration aims to address multiple image degradation problems.<n>Existing approaches rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration.<n>We propose DPMambaIR, a novel All-in-One image restoration framework.
- Score: 36.979833523678614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All-in-One image restoration aims to address multiple image degradation problems using a single model, significantly reducing training costs and deployment complexity compared to traditional methods that design dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework. By integrating a Degradation-Aware Prompt State Space Model (DP-SSM) and a High-Frequency Enhancement Block (HEB), DPMambaIR enables fine-grained modeling of complex degradation information and efficient global integration, while mitigating the loss of high-frequency details caused by task competition. Specifically, the DP-SSM utilizes a pre-trained degradation extractor to capture fine-grained degradation features and dynamically incorporates them into the state space modeling process, enhancing the model's adaptability to diverse degradation types. Concurrently, the HEB supplements high-frequency information, effectively addressing the loss of critical details, such as edges and textures, in multi-task image restoration scenarios. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
Related papers
- Dynamic Degradation Decomposition Network for All-in-One Image Restoration [3.856518745550605]
We introduce a dynamic degradation decomposition network for all-in-one image restoration, named D$3$Net.<n>D$3$Net achieves degradation-adaptive image restoration with guided prompt through cross-domain interaction and dynamic degradation decomposition.<n>Experiments on multiple image restoration tasks demonstrate that D$3$Net significantly outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-26T11:49:58Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model.
In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations.
arXiv Detail & Related papers (2024-11-25T09:26:34Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
This paper proposes a new task setting, i.e. Universal Image Restoration (UIR)<n>UIR doesn't require training on all the degradation combinations but only on a set of degradation bases and then removing any degradation that these bases can potentially compose in a zero-shot manner.<n>We propose Chain-of-Restoration (CoR) mechanism, which instructs models to remove unknown composite degradations step-by-step.
arXiv Detail & Related papers (2024-10-11T10:21:42Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Training-Free Large Model Priors for Multiple-in-One Image Restoration [24.230376300759573]
Large Model Driven Image Restoration framework (LMDIR)
Our architecture comprises a query-based prompt encoder, degradation-aware transformer block injecting global degradation knowledge.
This design facilitates single-stage training paradigm to address various degradations while supporting both automatic and user-guided restoration.
arXiv Detail & Related papers (2024-07-18T05:40:32Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
We propose textitDaAIR, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime.
By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning.
arXiv Detail & Related papers (2024-05-24T11:53:27Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
This work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR)
Our base diffusion model is the image restoration SDE (IR-SDE)
arXiv Detail & Related papers (2024-04-15T12:34:21Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
We introduce an alternative solution to improve the generalization of image restoration models.
We propose AdaptIR, a Mixture-of-Experts (MoE) with multi-branch design to capture local, global, and channel representation bases.
Our AdaptIR achieves stable performance on single-degradation tasks, and excels in hybrid-degradation tasks, with fine-tuning only 0.6% parameters for 8 hours.
arXiv Detail & Related papers (2023-12-12T14:27:59Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
Single-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image.
It is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.
This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling.
arXiv Detail & Related papers (2022-11-16T09:37:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.