Learning Enhanced Ensemble Filters
- URL: http://arxiv.org/abs/2504.17836v1
- Date: Thu, 24 Apr 2025 17:48:03 GMT
- Title: Learning Enhanced Ensemble Filters
- Authors: Eviatar Bach, Ricardo Baptista, Edoardo Calvello, Bohan Chen, Andrew Stuart,
- Abstract summary: Filter on Markov models approximates a mean-field model with an ensemble of interacting particles.<n>A novel form of neural operator takes probability distributions as input: a Measure Neural Mapping (MNM)<n>The MNM-enhanced ensemble filter (MNMEF) is defined in both the mean-fieldlimit and for interacting ensemble particle approximations.
- Score: 2.6330857455930725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The filtering distribution in hidden Markov models evolves according to the law of a mean-field model in state--observation space. The ensemble Kalman filter (EnKF) approximates this mean-field model with an ensemble of interacting particles, employing a Gaussian ansatz for the joint distribution of the state and observation at each observation time. These methods are robust, but the Gaussian ansatz limits accuracy. This shortcoming is addressed by approximating the mean-field evolution using a novel form of neural operator taking probability distributions as input: a Measure Neural Mapping (MNM). A MNM is used to design a novel approach to filtering, the MNM-enhanced ensemble filter (MNMEF), which is defined in both the mean-fieldlimit and for interacting ensemble particle approximations. The ensemble approach uses empirical measures as input to the MNM and is implemented using the set transformer, which is invariant to ensemble permutation and allows for different ensemble sizes. The derivation of methods from a mean-field formulation allows a single parameterization of the algorithm to be deployed at different ensemble sizes. In practice fine-tuning of a small number of parameters, for specific ensemble sizes, further enhances the accuracy of the scheme. The promise of the approach is demonstrated by its superior root-mean-square-error performance relative to leading methods in filtering the Lorenz 96 and Kuramoto-Sivashinsky models.
Related papers
- Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation [0.0]
We extent Metropolis-Adjusted Langevin Diffusion algorithm by modelling the Eigenity of precondition matrix as a random matrix.<n>The proposed method provides fully adaptation mechanisms to tune proposal densities to exploits and adapts the geometry of local structures of statistical models.
arXiv Detail & Related papers (2025-03-22T16:17:12Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.
We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Momentum Particle Maximum Likelihood [2.4561590439700076]
We propose an analogous dynamical-systems-inspired approach to minimizing the free energy functional.
By discretizing the system, we obtain a practical algorithm for Maximum likelihood estimation in latent variable models.
The algorithm outperforms existing particle methods in numerical experiments and compares favourably with other MLE algorithms.
arXiv Detail & Related papers (2023-12-12T14:53:18Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation [2.365116842280503]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - SIXO: Smoothing Inference with Twisted Objectives [8.049531918823758]
We introduce SIXO, a method that learns targets that approximate the smoothing distributions.
We then use SMC with these learned targets to define a variational objective for model and proposal learning.
arXiv Detail & Related papers (2022-06-13T07:46:35Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics.
We introduce an approach to "deform" Monte Carlo estimators based on contour deformations applied to the domain of the path integral.
We demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications.
arXiv Detail & Related papers (2021-06-03T16:37:05Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.