Black Hole Information From Non-vacuum Localised Quantum States
- URL: http://arxiv.org/abs/2504.17911v1
- Date: Thu, 24 Apr 2025 19:56:47 GMT
- Title: Black Hole Information From Non-vacuum Localised Quantum States
- Authors: Ali Akil, Riccardo Falcone, Nicetu Tibau Vidal, Giulio Chiribella,
- Abstract summary: We revisit Hawking's black hole radiation derivation, including the quantum state of the initial matter forming the black hole.<n>We investigate how non-vacuum initial quantum states, at the past of a black hole geometry, influence the black hole radiation observed at future null infinity $( mathcalI+)$.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit Hawking's black hole radiation derivation, including the quantum state of the initial matter forming the black hole. We investigate how non-vacuum initial quantum states, at the past of a black hole geometry, influence the black hole radiation observed at future null infinity $( \mathcal{I}^+)$. We further classify which of the initial state excitations are distinguishable from one another through measurements on the black hole radiation state. We use Algebraic Quantum Field Theory (AQFT) to provide a clear physical interpretation of the results, in terms of localised operations. We then take a concrete example of a black hole made of one large collapsing excitation of mass $M$ and compare it to a same-mass black hole formed due to the collapse of two smaller excitations, of mass $M/2$ each. We find using our formalism that the two cases yield different radiation states and can in principle be distinguished. Our results provide a mechanism for partial information recovery in evaporating black holes, classify what information is recoverable through stimulated emission, and a concrete understanding of the classification based on the AQFT localisation.
Related papers
- The information loss problem and Hawking radiation as tunneling [0.0]
We revisit the solution based on Hawking radiation as tunneling.<n>We show that black hole evaporation is governed by a time-dependent Schrodinger equation.
arXiv Detail & Related papers (2025-02-14T05:25:46Z) - Paradox No More: How Stimulated Emission of Radiation Preserves Information Absorbed by Black Holes [0.0]
Black holes have been implicated in two paradoxes that involve apparently non-unitary dynamics.<n>We show that this paradox is due to a mistake in Hawking's original derivation.<n>Resurrecting the contribution of stimulated emission makes it possible to calculate the (positive) classical information transmission capacity of black holes.
arXiv Detail & Related papers (2025-02-08T17:06:36Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Comparing the decoherence effects due to black holes versus ordinary matter [0.0]
A certain thought experiment was discussed which involves the decoherence of a quantum system due to a black hole.
We show how this phenomenon is consistent with standard ideas about quantum black holes.
arXiv Detail & Related papers (2024-05-03T16:35:10Z) - Page Time as a Transition of Information Channels: High-fidelity
Information Retrieval for Radiating Black Holes [11.13371546439765]
In this Letter, we demonstrate that this view can be relaxed in a new postselection model.
We investigate information recoverability in a radiating black hole through the non-unitary dynamics that projects the randomly-selected modes from a scrambling unitary.
We show that the model has the merit of producing the von Neumann entropy of black holes consistent with the island formula calculation.
In this model the Page time gains a new interpretation as the transition point between two channels of information transmission when sufficient amounts of effective modes are annihilated inside the horizon.
arXiv Detail & Related papers (2023-09-05T03:12:48Z) - Information retrieval from Hawking radiation in the non-isometric model
of black hole interior: theory and quantum simulations [11.13371546439765]
The non-isometric holographic model of the black hole interior stands out as a potential resolution of the long-standing black hole information puzzle.
We show how Yoshida-Kitaev decoding strategy can be employed in the modified Hayden-Preskill protocol.
This study would stimulate more interests to explore black hole information problem on the quantum processors.
arXiv Detail & Related papers (2023-07-04T03:16:36Z) - Stimulated Emission of Radiation and the Black Hole Information Problem [0.0]
Black holes not only emit radiation spontaneously, but also respond to infalling matter and radiation by emitting approximate clones of those fields in a stimulated manner.
I show how stimulated emission turns the black hole into an almost optimal quantum cloning machine.
I speculate about possible observable consequences of stimulated emission of radiation in black holes.
arXiv Detail & Related papers (2023-06-24T03:05:48Z) - Constraints on physical computers in holographic spacetimes [49.1574468325115]
We show that there are computations on $n$ qubits which cannot be implemented inside of black holes with entropy less than $O(2n)$.
We argue computations happening inside the black hole must be implementable in a programmable quantum processor.
arXiv Detail & Related papers (2023-04-19T18:00:50Z) - On Quantum Information Before the Page Time [0.0]
We show significant quantum information regarding the quantum state of the black hole prior to the Page time.
By computing the quantum fidelity in a 2D boundary conformal field theory model of black hole evaporation, we demonstrate that an observer outside of an evaporating black hole may distinguish different black holes.
arXiv Detail & Related papers (2022-12-13T19:00:00Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - What can we learn about islands and state paradox from quantum
information theory? [10.24376036299883]
We show that the Page curve can still be realized even if information is lost and the information paradox can be attributed to the measurement problem.
Though speculative, the similarities between the black hole information problem and the measurement problem may suggest some link in the origins of the two fundamental issues of distant fields.
arXiv Detail & Related papers (2021-07-20T02:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.