論文の概要: Causality-Driven Neural Network Repair: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2504.17946v1
- Date: Thu, 24 Apr 2025 21:22:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.580988
- Title: Causality-Driven Neural Network Repair: Challenges and Opportunities
- Title(参考訳): 因果性駆動型ニューラルネットワークの修復 : 課題と機会
- Authors: Fatemeh Vares, Brittany Johnson,
- Abstract要約: ディープニューラルネットワーク(DNN)はしばしば因果推論よりも統計的相関に頼り、その堅牢性と解釈可能性を制限する。
本稿では、主にDNN修復のためのアプローチとしての因果推論について検討し、因果デバッグと構造因果モデル(SCM)を用いて障害を特定し、修正する。
- 参考スコア(独自算出の注目度): 5.69361786082969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) often rely on statistical correlations rather than causal reasoning, limiting their robustness and interpretability. While testing methods can identify failures, effective debugging and repair remain challenging. This paper explores causal inference as an approach primarily for DNN repair, leveraging causal debugging, counterfactual analysis, and structural causal models (SCMs) to identify and correct failures. We discuss in what ways these techniques support fairness, adversarial robustness, and backdoor mitigation by providing targeted interventions. Finally, we discuss key challenges, including scalability, generalization, and computational efficiency, and outline future directions for integrating causality-driven interventions to enhance DNN reliability.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)はしばしば因果推論よりも統計的相関に頼り、その堅牢性と解釈可能性を制限する。
テストメソッドは障害を特定することができるが、効果的なデバッグと修復は難しいままである。
本稿では、主にDNN修復のための手法としての因果推論について検討し、因果デバッグ、逆ファクト解析、構造因果モデル(SCM)を利用して故障を特定し、修正する。
対象とする介入を提供することで、公正性、敵の堅牢性、バックドア緩和を支援する方法について論じる。
最後に、拡張性、一般化、計算効率などの重要な課題について論じ、DNNの信頼性を高めるために因果的介入を統合するための今後の方向性を概説する。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
本稿では、因果推論理論に基づく新しい手法TRACERを紹介し、DNN決定の根底にある因果ダイナミクスを推定する。
提案手法は入力特徴に系統的に介入し,特定の変化がネットワークを介してどのように伝播するかを観察し,内部の活性化と最終的な出力に影響を与える。
TRACERはさらに、モデルバイアスの可能性のある反ファクトを生成することで説明可能性を高め、誤分類に対する対照的な説明を提供する。
論文 参考訳(メタデータ) (2024-10-07T20:44:53Z) - Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning [11.13665894783481]
因果不透明性(英: Causal opacity)とは、ディープニューラルネットワーク(DNN)モデルの決定の根底にある「隠れた」因果構造を理解することの難しさを指す。
この研究は、因果概念グラフモデル(Causal Concept Graph Models, Causal CGMs)を導入している。
実験の結果, (i) 因果不透明モデルの一般化性能に一致し, (ii) ループ内修正を誤予測中間推論ステップに適用し, (iii) 介入シナリオと反事実シナリオの分析を支援することができた。
論文 参考訳(メタデータ) (2024-05-26T10:15:20Z) - NeuralSentinel: Safeguarding Neural Network Reliability and
Trustworthiness [0.0]
我々は,AIモデルの信頼性と信頼性を検証するツールであるNeuralSentinel(NS)を提案する。
NSは、モデル決定を理解することによって、専門家以外のスタッフがこの新しいシステムに対する信頼を高めるのに役立つ。
このツールはハッカソンイベントにデプロイされ、皮膚がん画像検出器の信頼性を評価するために使用された。
論文 参考訳(メタデータ) (2024-02-12T09:24:34Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Information-Theoretic Testing and Debugging of Fairness Defects in Deep
Neural Networks [13.425444923812586]
ディープフィードフォワードニューラルネットワーク(DNN)は、社会経済的決定支援ソフトウェアシステムにますます導入されている。
本稿では,DNNにおける公平性欠陥の検出とローカライズを行う情報理論テストおよびデバッグフレームワークDICEを提案する。
DICEは識別の量を効率よく特徴付けし、識別インスタンスを効果的に生成し、大きなバイアスを伴うレイヤ/ニューロンをローカライズする。
論文 参考訳(メタデータ) (2023-04-09T09:16:27Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - CARE: Certifiably Robust Learning with Reasoning via Variational
Inference [26.210129662748862]
推論パイプライン(CARE)を用いた頑健な学習を提案する。
CAREは、最先端のベースラインに比べて、かなり高い信頼性のロバスト性を達成する。
さらに,CAREの実証的ロバスト性および知識統合の有効性を示すために,異なるアブレーション研究を行った。
論文 参考訳(メタデータ) (2022-09-12T07:15:52Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。