論文の概要: Enhancing Privacy-Utility Trade-offs to Mitigate Memorization in Diffusion Models
- arxiv url: http://arxiv.org/abs/2504.18032v1
- Date: Fri, 25 Apr 2025 02:51:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.617416
- Title: Enhancing Privacy-Utility Trade-offs to Mitigate Memorization in Diffusion Models
- Title(参考訳): 拡散モデルにおける記憶の緩和のためのプライバシ・ユーティリティ・トレードオフの強化
- Authors: Chen Chen, Daochang Liu, Mubarak Shah, Chang Xu,
- Abstract要約: PRSSを導入し, 拡散モデルにおけるクラス化自由誘導手法を改良し, 即時再編成とセマンティック・プロンプト・サーチを統合した。
当社のアプローチは一貫してプライバシーとユーティリティのトレードオフを改善し、新たな最先端技術を確立します。
- 参考スコア(独自算出の注目度): 62.979954692036685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models have demonstrated remarkable capabilities in creating images highly aligned with user prompts, yet their proclivity for memorizing training set images has sparked concerns about the originality of the generated images and privacy issues, potentially leading to legal complications for both model owners and users, particularly when the memorized images contain proprietary content. Although methods to mitigate these issues have been suggested, enhancing privacy often results in a significant decrease in the utility of the outputs, as indicated by text-alignment scores. To bridge the research gap, we introduce a novel method, PRSS, which refines the classifier-free guidance approach in diffusion models by integrating prompt re-anchoring (PR) to improve privacy and incorporating semantic prompt search (SS) to enhance utility. Extensive experiments across various privacy levels demonstrate that our approach consistently improves the privacy-utility trade-off, establishing a new state-of-the-art.
- Abstract(参考訳): テキストと画像の拡散モデルは、ユーザープロンプトと高度に整合した画像を作成する際、顕著な能力を示したが、トレーニングセットイメージを記憶する傾向は、生成された画像の独創性とプライバシの問題への懸念を引き起こし、モデル所有者とユーザ双方にとって、特に記憶された画像がプロプライエタリなコンテンツを含む場合、法的に複雑になる可能性がある。
これらの問題を緩和する方法が提案されているが、テキストアライメントスコアによって示されるように、プライバシの向上は出力の有用性を著しく低下させることが多い。
本研究のギャップを埋めるために,プライバシ向上のためのPRとセマンティック・プロンプト・サーチ(SS)を統合することで,拡散モデルにおける分類自由誘導アプローチを洗練する新しい手法であるPRSSを導入する。
さまざまなプライバシレベルにわたる大規模な実験は、私たちのアプローチが一貫してプライバシーとユーティリティのトレードオフを改善し、新たな最先端技術を確立していることを示している。
関連論文リスト
- Privacy Protection Against Personalized Text-to-Image Synthesis via Cross-image Consistency Constraints [9.385284914809294]
Cross-image Anti-Personalization (CAP)は、パーソナライズに対する抵抗性を高める新しいフレームワークである。
本研究では,攻撃繰り返しにおける一貫性損失の影響を適応的にバランスさせる動的比調整戦略を開発する。
論文 参考訳(メタデータ) (2025-04-17T08:39:32Z) - Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models [26.821064889438777]
本稿では,拡散生成画像がトレーニングデータの統計的特性を忠実に保存していることを示す。
emphCoprGuardは、許可されていない画像の使用を防ぐための堅牢な周波数領域透かしフレームワークである。
論文 参考訳(メタデータ) (2025-03-14T04:27:50Z) - CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models [58.58208005178676]
自動著作権侵害識別フレームワークであるCopyJudgeを提案する。
我々は,多LVLM議論を伴う抽象フィルタ比較テストフレームワークを用いて,侵害の可能性を評価する。
これらの判断に基づいて、一般のLVLMに基づく緩和戦略を導入する。
論文 参考訳(メタデータ) (2025-02-21T08:09:07Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models [27.83772742404565]
本稿では,カスタマイズした拡散モデルのためのPAP(Prompt-Agnostic Adversarial Perturbation)手法を提案する。
PAPはまず、ラプラス近似を用いてプロンプト分布をモデル化し、その後、外乱期待を最大化することで、急激な摂動を発生させる。
このアプローチは、即時無敵攻撃に効果的に取り組み、防御安定性を向上させる。
論文 参考訳(メタデータ) (2024-08-20T06:17:56Z) - LCM-Lookahead for Encoder-based Text-to-Image Personalization [82.56471486184252]
我々は,テキスト・ツー・イメージ・モデルのパーソナライズを導くために,ショートカット・メカニズムを利用する可能性を探る。
エンコーダをベースとしたパーソナライズ手法に焦点をあてて、ルックアヘッドのアイデンティティ損失を調整することで、より高いアイデンティティの忠実性を達成できることを実証する。
論文 参考訳(メタデータ) (2024-04-04T17:43:06Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
研究は、テキストから画像への拡散モデルがトレーニングデータから画像を複製し、著作権侵害やプライバシーのリスクに対する大きな懸念を引き起こすことを示唆している。
暗記中、クロスアテンションは特定のトークンの埋め込みに不均等に集中する傾向にあることが明らかとなった。
拡散モデルにおける記憶の検出と緩和のための革新的なアプローチを導入する。
論文 参考訳(メタデータ) (2024-03-17T01:27:00Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
HE拡散(HE-Diffusion)と呼ばれる同相暗号を利用したプライバシー保護型安定拡散フレームワークを提案する。
本稿では,効率的な部分的画像暗号化を実現するための新しいミン歪み法を提案する。
HEベースのプライバシ保存型安定拡散推論の実装に成功した。
論文 参考訳(メタデータ) (2024-03-09T04:56:57Z) - Privacy Enhancement for Cloud-Based Few-Shot Learning [4.1579007112499315]
クラウドなど,信頼できない環境における数ショット学習のプライバシ向上について検討する。
本稿では,共同損失によるプライバシー保護表現を学習する手法を提案する。
実証的な結果は、プライバシが強化された数発の学習において、プライバシとパフォーマンスのトレードオフをどのように交渉できるかを示している。
論文 参考訳(メタデータ) (2022-05-10T18:48:13Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。