Opportunistic Collaborative Planning with Large Vision Model Guided Control and Joint Query-Service Optimization
- URL: http://arxiv.org/abs/2504.18057v1
- Date: Fri, 25 Apr 2025 04:07:21 GMT
- Title: Opportunistic Collaborative Planning with Large Vision Model Guided Control and Joint Query-Service Optimization
- Authors: Jiayi Chen, Shuai Wang, Guoliang Li, Wei Xu, Guangxu Zhu, Derrick Wing Kwan Ng, Chengzhong Xu,
- Abstract summary: Navigating autonomous vehicles in open scenarios is a challenge due to the difficulties in handling unseen objects.<n>Existing solutions either rely on small models that struggle with generalization or large models that are resource-intensive.<n>This paper proposes opportunistic collaborative planning (OCP), which seamlessly integrates efficient local models with powerful cloud models.
- Score: 74.92515821144484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigating autonomous vehicles in open scenarios is a challenge due to the difficulties in handling unseen objects. Existing solutions either rely on small models that struggle with generalization or large models that are resource-intensive. While collaboration between the two offers a promising solution, the key challenge is deciding when and how to engage the large model. To address this issue, this paper proposes opportunistic collaborative planning (OCP), which seamlessly integrates efficient local models with powerful cloud models through two key innovations. First, we propose large vision model guided model predictive control (LVM-MPC), which leverages the cloud for LVM perception and decision making. The cloud output serves as a global guidance for a local MPC, thereby forming a closed-loop perception-to-control system. Second, to determine the best timing for large model query and service, we propose collaboration timing optimization (CTO), including object detection confidence thresholding (ODCT) and cloud forward simulation (CFS), to decide when to seek cloud assistance and when to offer cloud service. Extensive experiments show that the proposed OCP outperforms existing methods in terms of both navigation time and success rate.
Related papers
- EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models [64.18350535770357]
We propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning.
Our approach only leverages a small number of samples to search for the desired pruning policy.
We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering.
arXiv Detail & Related papers (2025-03-19T16:07:04Z) - CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration [1.6021932740447968]
Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence.
LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives.
We introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge.
arXiv Detail & Related papers (2024-11-05T06:00:27Z) - Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - DC-CCL: Device-Cloud Collaborative Controlled Learning for Large Vision
Models [43.41875046295657]
We propose a device-cloud collaborative controlled learning framework, called DC-CCL.
DC-CCL splits the base model into two submodels, one large submodel for learning from the cloud-side samples and the other small submodel for learning from the device-side samples and performing device-cloud knowledge fusion.
arXiv Detail & Related papers (2023-03-18T08:35:12Z) - DualCF: Efficient Model Extraction Attack from Counterfactual
Explanations [57.46134660974256]
Cloud service providers have launched Machine-Learning-as-a-Service platforms to allow users to access large-scale cloudbased models via APIs.
Such extra information inevitably causes the cloud models to be more vulnerable to extraction attacks.
We propose a novel simple yet efficient querying strategy to greatly enhance the querying efficiency to steal a classification model.
arXiv Detail & Related papers (2022-05-13T08:24:43Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Device-Cloud Collaborative Learning for Recommendation [50.01289274123047]
We propose a novel MetaPatch learning approach on the device side to efficiently achieve "thousands of people with thousands of models" given a centralized cloud model.
With billions of updated personalized device models, we propose a "model-over-models" distillation algorithm, namely MoMoDistill, to update the centralized cloud model.
arXiv Detail & Related papers (2021-04-14T05:06:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.