Two-way covert quantum communication in the microwave regime
- URL: http://arxiv.org/abs/2004.07192v2
- Date: Fri, 14 May 2021 07:11:02 GMT
- Title: Two-way covert quantum communication in the microwave regime
- Authors: R. Di Candia, H. Yi\u{g}itler, G. S. Paraoanu, and R. J\"antti
- Abstract summary: Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum communication addresses the problem of exchanging information across
macroscopic distances by employing encryption techniques based on quantum
mechanical laws. Here, we advance a new paradigm for secure quantum
communication by combining backscattering concepts with covert communication in
the microwave regime. Our protocol allows communication between Alice, who uses
only discrete phase modulations, and Bob, who has access to cryogenic microwave
technology. Using notions of quantum channel discrimination and quantum
metrology, we find the ultimate bounds for the receiver performance, proving
that quantum correlations can enhance the SNR by up to $6$ dB. These bounds
rule out any quantum illumination advantage when the source is strongly
amplified, and show that a relevant gain is possible only in the low
photon-number regime. We show how the protocol can be used for covert
communication, where the carrier signal is indistinguishable from the thermal
noise in the environment. We complement our information-theoretic results with
a feasible experimental proposal in a circuit-QED platform. This work makes a
decisive step toward implementing secure quantum communication concepts in the
previously uncharted $1$-$10$ GHz frequency range, in the scenario when the
disposable power of one party is severely constrained.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Wireless Microwave Quantum Communication [0.0]
We study the limits in the application of quantum microwaves for quantum communication and quantum sensing.
We take advantage of Gaussian quantum states for quantum teleportation and quantum illumination.
We conclude by studying the teleportation of quantum information in a quantum local area.
arXiv Detail & Related papers (2024-01-15T11:40:44Z) - Demonstration of microwave single-shot quantum key distribution [0.0]
Microwave quantum communication is set to play an important role in future quantum networks.
We show that security performance can be improved by adding finite trusted noise to the preparation side.
arXiv Detail & Related papers (2023-11-18T13:22:55Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum transduction with microwave and optical entanglement [9.78316480470736]
Microwave-optical entanglement can be generated using various platforms.
In this paper, we make the teleportation induced conversion scheme more concrete in the framework of quantum channel theory.
arXiv Detail & Related papers (2022-02-09T17:51:29Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Deterministic microwave-optical transduction based on quantum
teleportation [4.046143379963425]
coherent transduction between microwave and optical frequencies is critical to interconnect superconducting quantum processors over long distances.
We propose a scheme based on continuous-variable quantum teleportation.
We show that the teleportation-based scheme maintains a significant rate advantage robustly for all values of cooperativity.
arXiv Detail & Related papers (2021-06-26T15:02:49Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.