Learning to fuse: dynamic integration of multi-source data for accurate battery lifespan prediction
- URL: http://arxiv.org/abs/2504.18230v1
- Date: Fri, 25 Apr 2025 10:24:45 GMT
- Title: Learning to fuse: dynamic integration of multi-source data for accurate battery lifespan prediction
- Authors: He Shanxuan, Lin Zuhong, Yu Bolun, Gao Xu, Long Biao, Yao Jingjing,
- Abstract summary: This study presents a hybrid learning framework for precise battery lifespan prediction.<n>It integrates dynamic multi-source data fusion with a stacked ensemble (SE) modeling approach.<n>It achieves a mean absolute error (MAE) of 0.0058, root mean square error (RMSE) of 0.0092, and coefficient of determination (R2) of 0.9839.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of lithium-ion battery lifespan is vital for ensuring operational reliability and reducing maintenance costs in applications like electric vehicles and smart grids. This study presents a hybrid learning framework for precise battery lifespan prediction, integrating dynamic multi-source data fusion with a stacked ensemble (SE) modeling approach. By leveraging heterogeneous datasets from the National Aeronautics and Space Administration (NASA), Center for Advanced Life Cycle Engineering (CALCE), MIT-Stanford-Toyota Research Institute (TRC), and nickel cobalt aluminum (NCA) chemistries, an entropy-based dynamic weighting mechanism mitigates variability across heterogeneous datasets. The SE model combines Ridge regression, long short-term memory (LSTM) networks, and eXtreme Gradient Boosting (XGBoost), effectively capturing temporal dependencies and nonlinear degradation patterns. It achieves a mean absolute error (MAE) of 0.0058, root mean square error (RMSE) of 0.0092, and coefficient of determination (R2) of 0.9839, outperforming established baseline models with a 46.2% improvement in R2 and an 83.2% reduction in RMSE. Shapley additive explanations (SHAP) analysis identifies differential discharge capacity (Qdlin) and temperature of measurement (Temp_m) as critical aging indicators. This scalable, interpretable framework enhances battery health management, supporting optimized maintenance and safety across diverse energy storage systems, thereby contributing to improved battery health management in energy storage systems.
Related papers
- Battery State of Health Estimation Using LLM Framework [0.0]
This study introduces a transformer-based framework for estimating the State of Health (SoH) of lithium titanate (LTO) battery cells.<n>We demonstrate the impact of charge durations on energy storage trends and apply Differential Voltage Analysis (DVA) to monitor capacity changes.<n>Our model achieves superior performance, with a Mean Absolute Error (MAE) as low as 0.87% and varied latency metrics.
arXiv Detail & Related papers (2025-01-30T03:55:56Z) - Improving Low-Fidelity Models of Li-ion Batteries via Hybrid Sparse Identification of Nonlinear Dynamics [1.5728609542259502]
This paper presents a data-inspired approach for improving the fidelity of reduced-order li-ion battery models.
The proposed method combines a Genetic Algorithm with Sequentially Thresholded Ridge Regression (GA-STRidge) to identify and compensate for discrepancies between a low-fidelity model (LFM) and data generated either from testing or a high-fidelity model (HFM)
The hybrid model, combining physics-based and data-driven methods, is tested across different driving cycles to demonstrate the ability to significantly reduce the voltage prediction error compared to the baseline LFM.
arXiv Detail & Related papers (2024-11-20T00:00:11Z) - A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles [1.393499936476792]
We present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework.
We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions.
Our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions.
arXiv Detail & Related papers (2024-10-18T09:57:59Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Health diagnosis and recuperation of aged Li-ion batteries with data
analytics and equivalent circuit modeling [12.367920799620965]
This paper presents aging and reconditioning experiments of 62 commercial high-energy type lithium iron phosphate (LFP) cells.
The relatively large-scale data allow us to use machine learning models to predict cycle life and identify important indicators of recoverable capacity.
arXiv Detail & Related papers (2023-09-21T17:15:10Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
Lithium-ion batteries (LIBs) are key to promoting electrification in the coming decades.
Inadequate understanding of LIB degradation is an important bottleneck that limits battery durability and safety.
Here, we propose hybrid physics-based and data-driven modeling for online diagnosis and prognosis of battery degradation.
arXiv Detail & Related papers (2021-10-25T11:14:12Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.