Neural operators struggle to learn complex PDEs in pedestrian mobility: Hughes model case study
- URL: http://arxiv.org/abs/2504.18267v1
- Date: Fri, 25 Apr 2025 11:26:41 GMT
- Title: Neural operators struggle to learn complex PDEs in pedestrian mobility: Hughes model case study
- Authors: Prajwal Chauhan, Salah Eddine Choutri, Mohamed Ghattassi, Nader Masmoudi, Saif Eddin Jabari,
- Abstract summary: Hughes model is a first-order hyperbolic conservation law system for crowd dynamics.<n>Neural operators perform well in easy scenarios with fewer discontinuities in the initial condition.<n>They struggle in complex scenarios with multiple initial discontinuities and dynamic boundary conditions.
- Score: 4.853898836835068
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the limitations of neural operators in learning solutions for a Hughes model, a first-order hyperbolic conservation law system for crowd dynamics. The model couples a Fokker-Planck equation representing pedestrian density with a Hamilton-Jacobi-type (eikonal) equation. This Hughes model belongs to the class of nonlinear hyperbolic systems that often exhibit complex solution structures, including shocks and discontinuities. In this study, we assess the performance of three state-of-the-art neural operators (Fourier Neural Operator, Wavelet Neural Operator, and Multiwavelet Neural Operator) in various challenging scenarios. Specifically, we consider (1) discontinuous and Gaussian initial conditions and (2) diverse boundary conditions, while also examining the impact of different numerical schemes. Our results show that these neural operators perform well in easy scenarios with fewer discontinuities in the initial condition, yet they struggle in complex scenarios with multiple initial discontinuities and dynamic boundary conditions, even when trained specifically on such complex samples. The predicted solutions often appear smoother, resulting in a reduction in total variation and a loss of important physical features. This smoothing behavior is similar to issues discussed by Daganzo (1995), where models that introduce artificial diffusion were shown to miss essential features such as shock waves in hyperbolic systems. These results suggest that current neural operator architectures may introduce unintended regularization effects that limit their ability to capture transport dynamics governed by discontinuities. They also raise concerns about generalizing these methods to traffic applications where shock preservation is essential.
Related papers
- High-order expansion of Neural Ordinary Differential Equations flows [4.4569182855550755]
We introduce Event Transitions, a framework based on high-order differentials that provides a rigorous mathematical description of neural ODE dynamics on event gradient.<n>Our findings contribute to a deeper theoretical foundation for event-triggered neural differential equations and provide a mathematical construct for explaining complex system dynamics.
arXiv Detail & Related papers (2025-04-02T08:57:34Z) - Wavelet Diffusion Neural Operator [17.617919636212445]
We propose Wavelet Neural Diffusion Operator (WDNO), a novel PDE simulation and control framework.<n>WDNO performs diffusion-based generative modeling in the wavelet domain to handle abrupt changes and long-term dependencies effectively.<n>To address the issue of poor generalization across different resolutions, we introduce multi-resolution training.
arXiv Detail & Related papers (2024-12-06T07:56:25Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Bayesian Conditional Diffusion Models for Versatile Spatiotemporal
Turbulence Generation [13.278744447861289]
We introduce a novel generative framework grounded in probabilistic diffusion models for turbulence generation.
A notable feature of our approach is the proposed method for long-span flow sequence generation, which is based on autoregressive-based conditional sampling.
We showcase the versatile turbulence generation capability of our framework through a suite of numerical experiments.
arXiv Detail & Related papers (2023-11-14T04:08:14Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
We introduce the Neural SPDE model providing an extension to two important classes of physics-inspired neural architectures.
On the one hand, it extends all the popular neural -- ordinary, controlled, rough -- differential equation models in that it is capable of processing incoming information.
On the other hand, it extends Neural Operators -- recent generalizations of neural networks modelling mappings between functional spaces -- in that it can be used to learn complex SPDE solution operators.
arXiv Detail & Related papers (2021-10-19T20:35:37Z) - A Differentiable Contact Model to Extend Lagrangian and Hamiltonian
Neural Networks for Modeling Hybrid Dynamics [10.019335078365705]
We introduce a differentiable contact model, which can capture contact mechanics, both frictionless and frictional, as well as both elastic and inelastic.
We demonstrate this framework on a series of challenging 2D and 3D physical systems with different coefficients of restitution and friction.
arXiv Detail & Related papers (2021-02-12T22:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.