COCO-Inpaint: A Benchmark for Image Inpainting Detection and Manipulation Localization
- URL: http://arxiv.org/abs/2504.18361v1
- Date: Fri, 25 Apr 2025 14:04:36 GMT
- Title: COCO-Inpaint: A Benchmark for Image Inpainting Detection and Manipulation Localization
- Authors: Haozhen Yan, Yan Hong, Jiahui Zhan, Yikun Ji, Jun Lan, Huijia Zhu, Weiqiang Wang, Jianfu Zhang,
- Abstract summary: COCOInpaint is a benchmark specifically designed for inpainting detection.<n>High-quality inpainting samples generated by six state-of-the-art inpainting models.<n>Large-scale coverage with 258,266 inpainted images with rich semantic diversity.
- Score: 32.26473230517668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in image manipulation have achieved unprecedented progress in generating photorealistic content, but also simultaneously eliminating barriers to arbitrary manipulation and editing, raising concerns about multimedia authenticity and cybersecurity. However, existing Image Manipulation Detection and Localization (IMDL) methodologies predominantly focus on splicing or copy-move forgeries, lacking dedicated benchmarks for inpainting-based manipulations. To bridge this gap, we present COCOInpaint, a comprehensive benchmark specifically designed for inpainting detection, with three key contributions: 1) High-quality inpainting samples generated by six state-of-the-art inpainting models, 2) Diverse generation scenarios enabled by four mask generation strategies with optional text guidance, and 3) Large-scale coverage with 258,266 inpainted images with rich semantic diversity. Our benchmark is constructed to emphasize intrinsic inconsistencies between inpainted and authentic regions, rather than superficial semantic artifacts such as object shapes. We establish a rigorous evaluation protocol using three standard metrics to assess existing IMDL approaches. The dataset will be made publicly available to facilitate future research in this area.
Related papers
- IMFine: 3D Inpainting via Geometry-guided Multi-view Refinement [15.206470606085341]
We introduce a novel approach that produces inpainted 3D scenes with consistent visual quality and coherent underlying geometry.<n>Specifically, we propose a robust 3D inpainting pipeline that incorporates geometric priors and a multi-view refinement network trained via test-time adaptation.<n>We develop a novel inpainting mask detection technique to derive targeted inpainting masks from object masks, boosting the performance in handling unconstrained scenes.
arXiv Detail & Related papers (2025-03-06T14:50:17Z) - A Large-scale AI-generated Image Inpainting Benchmark [11.216906046169683]
We propose a methodology for creating high-quality inpainting datasets and apply it to create DiQuID.<n>DiQuID comprises over 95,000 inpainted images generated from 78,000 original images sourced from MS-COCO, RAISE, and OpenImages.<n>We provide comprehensive benchmarking results using state-of-the-art forgery detection methods, demonstrating the dataset's effectiveness in evaluating and improving detection algorithms.
arXiv Detail & Related papers (2025-02-10T15:56:28Z) - SketchYourSeg: Mask-Free Subjective Image Segmentation via Freehand Sketches [116.1810651297801]
SketchYourSeg establishes freehand sketches as a powerful query modality for subjective image segmentation.<n>Our evaluations demonstrate superior performance over existing approaches across diverse benchmarks.
arXiv Detail & Related papers (2025-01-27T13:07:51Z) - Dense Feature Interaction Network for Image Inpainting Localization [28.028361409524457]
Inpainting can be used to conceal or alter image contents in malicious manipulation of images.
Existing methods mostly rely on a basic encoder-decoder structure, which often results in a high number of false positives.
In this paper, we describe a new method for inpainting detection based on a Dense Feature Interaction Network (DeFI-Net)
arXiv Detail & Related papers (2024-08-05T02:35:13Z) - VIP: Versatile Image Outpainting Empowered by Multimodal Large Language Model [28.345828491336874]
This work presents a novel image outpainting framework that is capable of customizing the results according to the requirement of users.<n>We take advantage of a Multimodal Large Language Model (MLLM) that automatically extracts and organizes the corresponding textual descriptions of the masked and unmasked part of a given image.<n>In addition, a special Cross-Attention module, namely Center-Total-Surrounding (CTS), is elaborately designed to enhance further the the interaction between specific space regions of the image and corresponding parts of the text prompts.
arXiv Detail & Related papers (2024-06-03T07:14:19Z) - Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
We introduce a novel partial discrete diffusion process (PDDP) for sketch-guided inpainting.
PDDP corrupts the masked regions of the image and reconstructs these masked regions conditioned on hand-drawn sketches.
The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process.
arXiv Detail & Related papers (2024-04-18T07:07:38Z) - Locate, Assign, Refine: Taming Customized Promptable Image Inpainting [22.163855501668206]
We introduce the multimodal promptable image inpainting project: a new task model, and data for taming customized image inpainting.<n>We propose LAR-Gen, a novel approach for image inpainting that enables seamless inpainting of specific region in images corresponding to the mask prompt.<n>Our LAR-Gen adopts a coarse-to-fine manner to ensure the context consistency of source image, subject identity consistency, local semantic consistency to the text description, and smoothness consistency.
arXiv Detail & Related papers (2024-03-28T16:07:55Z) - BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNet is a novel plug-and-play dual-branch model engineered to embed pixel-level masked image features into any pre-trained DM.
BrushNet's superior performance over existing models across seven key metrics, including image quality, mask region preservation, and textual coherence.
arXiv Detail & Related papers (2024-03-11T17:59:31Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
We present a novel model for large hole inpainting, which unifies the merits of transformers and convolutions.
Experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets.
arXiv Detail & Related papers (2022-03-29T06:36:17Z) - Palette: Image-to-Image Diffusion Models [50.268441533631176]
We introduce Palette, a simple and general framework for image-to-image translation using conditional diffusion models.
On four challenging image-to-image translation tasks, Palette outperforms strong GAN and regression baselines.
We report several sample quality scores including FID, Inception Score, Classification Accuracy of a pre-trained ResNet-50, and Perceptual Distance against reference images.
arXiv Detail & Related papers (2021-11-10T17:49:29Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
We study the roles of semantics and details for image matting.
We propose a novel Glance and Focus Matting network (GFM), which employs a shared encoder and two separate decoders.
Comprehensive empirical studies have demonstrated that GFM outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-30T10:57:13Z) - Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed
Scenes [54.836331922449666]
We propose a Semantic Guidance and Evaluation Network (SGE-Net) to update the structural priors and the inpainted image.
It utilizes semantic segmentation map as guidance in each scale of inpainting, under which location-dependent inferences are re-evaluated.
Experiments on real-world images of mixed scenes demonstrated the superiority of our proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2020-03-15T17:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.