Bridge the Domains: Large Language Models Enhanced Cross-domain Sequential Recommendation
- URL: http://arxiv.org/abs/2504.18383v1
- Date: Fri, 25 Apr 2025 14:30:25 GMT
- Title: Bridge the Domains: Large Language Models Enhanced Cross-domain Sequential Recommendation
- Authors: Qidong Liu, Xiangyu Zhao, Yejing Wang, Zijian Zhang, Howard Zhong, Chong Chen, Xiang Li, Wei Huang, Feng Tian,
- Abstract summary: Cross-domain Sequential Recommendation (CDSR) aims to extract the preference from the user's historical interactions across various domains.<n>Existing CDSR methods rely on users who own interactions on all domains to learn cross-domain item relationships.<n>With powerful representation and reasoning abilities, Large Language Models (LLMs) are promising to address these two problems.
- Score: 30.116213884571803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain Sequential Recommendation (CDSR) aims to extract the preference from the user's historical interactions across various domains. Despite some progress in CDSR, two problems set the barrier for further advancements, i.e., overlap dilemma and transition complexity. The former means existing CDSR methods severely rely on users who own interactions on all domains to learn cross-domain item relationships, compromising the practicability. The latter refers to the difficulties in learning the complex transition patterns from the mixed behavior sequences. With powerful representation and reasoning abilities, Large Language Models (LLMs) are promising to address these two problems by bridging the items and capturing the user's preferences from a semantic view. Therefore, we propose an LLMs Enhanced Cross-domain Sequential Recommendation model (LLM4CDSR). To obtain the semantic item relationships, we first propose an LLM-based unified representation module to represent items. Then, a trainable adapter with contrastive regularization is designed to adapt the CDSR task. Besides, a hierarchical LLMs profiling module is designed to summarize user cross-domain preferences. Finally, these two modules are integrated into the proposed tri-thread framework to derive recommendations. We have conducted extensive experiments on three public cross-domain datasets, validating the effectiveness of LLM4CDSR. We have released the code online.
Related papers
- Joint Similarity Item Exploration and Overlapped User Guidance for Multi-Modal Cross-Domain Recommendation [27.00142195880019]
We propose Joint Similarity Item Exploration and Overlapped User Guidance (SIEOUG) for solving the Multi-Modal Cross-Domain Recommendation problem.<n>Our empirical study on Amazon dataset with several different tasks demonstrates that SIEOUG significantly outperforms the state-of-the-art models under the MMCDR setting.
arXiv Detail & Related papers (2025-02-22T03:57:43Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Information Maximization via Variational Autoencoders for Cross-Domain Recommendation [26.099908029810756]
We introduce a new CDSR framework named Information Maximization Variational Autoencoder (textbftextttIM-VAE)
Here, we suggest using a Pseudo-Sequence Generator to enhance the user's interaction history input for downstream fine-grained CDSR models.
To the best of our knowledge, this paper is the first CDSR work that considers the information disentanglement and denoising of pseudo-sequences in the open-world recommendation scenario.
arXiv Detail & Related papers (2024-05-31T09:07:03Z) - Learning Partially Aligned Item Representation for Cross-Domain Sequential Recommendation [72.73379646418435]
Cross-domain sequential recommendation aims to uncover and transfer users' sequential preferences across domains.
misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment.
We propose a model-agnostic framework called textbfCross-domain item representation textbfAlignment for textbfCross-textbfDomain textbfSequential textbfRecommendation.
arXiv Detail & Related papers (2024-05-21T03:25:32Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - One Model for All: Large Language Models are Domain-Agnostic Recommendation Systems [43.79001185418127]
This paper introduces a framework that utilizes pre-trained large language models (LLMs) for domain-agnostic recommendation.<n>Specifically, we mix user's behaviors from multiple domains and item titles into a sentence, then use LLMs for generating user and item representations.
arXiv Detail & Related papers (2023-10-22T13:56:14Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) characterizes evolving patterns of user behaviors by modeling how users transit among items.
To solve this problem, we focus on Cross-Domain Sequential Recommendation (CDSR)
We propose DDGHM, a novel framework for the CDSR problem, which includes two main modules, dual dynamic graph modeling and hybrid metric training.
arXiv Detail & Related papers (2022-09-21T07:53:06Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem.
We propose a novel approach to cross-domain sequential recommendations based on the dual learning mechanism.
arXiv Detail & Related papers (2021-06-05T01:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.