Model Evaluation in the Dark: Robust Classifier Metrics with Missing Labels
- URL: http://arxiv.org/abs/2504.18385v1
- Date: Fri, 25 Apr 2025 14:31:42 GMT
- Title: Model Evaluation in the Dark: Robust Classifier Metrics with Missing Labels
- Authors: Danial Dervovic, Michael Cashmore,
- Abstract summary: We propose a multiple imputation technique for evaluating classifiers using metrics such as precision, recall, and ROC-AUC.<n>We empirically show that the predictive distribution's location and shape are generally correct, even in the Missing Not At Random regime.
- Score: 2.384873896423002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missing data in supervised learning is well-studied, but the specific issue of missing labels during model evaluation has been overlooked. Ignoring samples with missing values, a common solution, can introduce bias, especially when data is Missing Not At Random (MNAR). We propose a multiple imputation technique for evaluating classifiers using metrics such as precision, recall, and ROC-AUC. This method not only offers point estimates but also a predictive distribution for these quantities when labels are missing. We empirically show that the predictive distribution's location and shape are generally correct, even in the MNAR regime. Moreover, we establish that this distribution is approximately Gaussian and provide finite-sample convergence bounds. Additionally, a robustness proof is presented, confirming the validity of the approximation under a realistic error model.
Related papers
- A Statistical Model for Predicting Generalization in Few-Shot
Classification [6.158812834002346]
We introduce a Gaussian model of the feature distribution to predict the generalization error.
We show that our approach outperforms alternatives such as the leave-one-out cross-validation strategy.
arXiv Detail & Related papers (2022-12-13T10:21:15Z) - Estimating the Contamination Factor's Distribution in Unsupervised
Anomaly Detection [7.174572371800215]
Anomaly detection methods identify examples that do not follow the expected behaviour.
The proportion of examples marked as anomalies equals the expected proportion of anomalies, called contamination factor.
We introduce a method for estimating the posterior distribution of the contamination factor of a given unlabeled dataset.
arXiv Detail & Related papers (2022-10-19T11:51:25Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
We show that uncertainty for learning from limited number of samples of high-dimensional input data and labels can be obtained by the approximate message passing algorithm.
We discuss how over-confidence can be mitigated by appropriately regularising, and show that cross-validating with respect to the loss leads to better calibration than with the 0/1 error.
arXiv Detail & Related papers (2022-02-07T15:32:07Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Cross-validation: what does it estimate and how well does it do it? [2.049702429898688]
Cross-validation is a widely-used technique to estimate prediction error, but its behavior is complex and not fully understood.
We prove that this is not the case for the linear model fit by ordinary least squares; rather it estimates the average prediction error of models fit on other unseen training sets drawn from the same population.
arXiv Detail & Related papers (2021-04-01T17:58:54Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Matrix Completion with Quantified Uncertainty through Low Rank Gaussian
Copula [30.84155327760468]
This paper proposes a framework for missing value imputation with quantified uncertainty.
The time required to fit the model scales linearly with the number of rows and the number of columns in the dataset.
Empirical results show the method yields state-of-the-art imputation accuracy across a wide range of data types.
arXiv Detail & Related papers (2020-06-18T19:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.