Performance Estimation in Binary Classification Using Calibrated Confidence
- URL: http://arxiv.org/abs/2505.05295v1
- Date: Thu, 08 May 2025 14:34:44 GMT
- Title: Performance Estimation in Binary Classification Using Calibrated Confidence
- Authors: Juhani Kivimäki, Jakub Białek, Wojtek Kuberski, Jukka K. Nurminen,
- Abstract summary: We present CBPE, a novel method that can estimate any binary classification metric defined using the confusion matrix.<n>CBPE is shown to produce estimates that come with strong theoretical guarantees and valid confidence intervals.
- Score: 0.5399800035598186
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Model monitoring is a critical component of the machine learning lifecycle, safeguarding against undetected drops in the model's performance after deployment. Traditionally, performance monitoring has required access to ground truth labels, which are not always readily available. This can result in unacceptable latency or render performance monitoring altogether impossible. Recently, methods designed to estimate the accuracy of classifier models without access to labels have shown promising results. However, there are various other metrics that might be more suitable for assessing model performance in many cases. Until now, none of these important metrics has received similar interest from the scientific community. In this work, we address this gap by presenting CBPE, a novel method that can estimate any binary classification metric defined using the confusion matrix. In particular, we choose four metrics from this large family: accuracy, precision, recall, and F$_1$, to demonstrate our method. CBPE treats the elements of the confusion matrix as random variables and leverages calibrated confidence scores of the model to estimate their distributions. The desired metric is then also treated as a random variable, whose full probability distribution can be derived from the estimated confusion matrix. CBPE is shown to produce estimates that come with strong theoretical guarantees and valid confidence intervals.
Related papers
- Model Evaluation in the Dark: Robust Classifier Metrics with Missing Labels [2.384873896423002]
We propose a multiple imputation technique for evaluating classifiers using metrics such as precision, recall, and ROC-AUC.<n>We empirically show that the predictive distribution's location and shape are generally correct, even in the Missing Not At Random regime.
arXiv Detail & Related papers (2025-04-25T14:31:42Z) - A comprehensive review of classifier probability calibration metrics [0.0]
Probabilities or confidence values produced by AI andML models often do not reflect their true accuracy.<n>Probabilities calibration metrics measure the discrepancy between confidence and accuracy.
arXiv Detail & Related papers (2025-04-25T11:44:44Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
Deep networks often suffer from overconfidence and misaligned predictive distributions.
We introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance between the learned predictive distribution and the empirical, conditional distribution in a dataset.
We show that using to measure congruence 1) accurately quantifies misalignment between distributions when the data generating process is known, 2) effectively scales to real-world, high dimensional image regression tasks, and 3) can be used to gauge model reliability on unseen instances.
arXiv Detail & Related papers (2024-05-20T23:30:07Z) - Never mind the metrics -- what about the uncertainty? Visualising
confusion matrix metric distributions [6.566615606042994]
This paper strives for a more balanced perspective on classifier performance metrics by highlighting their distributions under different models of uncertainty.
We develop equations, animations and interactive visualisations of the contours of performance metrics within (and beyond) this ROC space.
Our hope is that these insights and visualisations will raise greater awareness of the substantial uncertainty in performance metric estimates.
arXiv Detail & Related papers (2022-06-05T11:54:59Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Classifier uncertainty: evidence, potential impact, and probabilistic
treatment [0.0]
We present an approach to quantify the uncertainty of classification performance metrics based on a probability model of the confusion matrix.
We show that uncertainties can be surprisingly large and limit performance evaluation.
arXiv Detail & Related papers (2020-06-19T12:49:19Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.