論文の概要: Investigating Co-Constructive Behavior of Large Language Models in Explanation Dialogues
- arxiv url: http://arxiv.org/abs/2504.18483v1
- Date: Fri, 25 Apr 2025 16:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.848543
- Title: Investigating Co-Constructive Behavior of Large Language Models in Explanation Dialogues
- Title(参考訳): 説明対話における大規模言語モデルの共構築行動の検討
- Authors: Leandra Fichtel, Maximilian Spliethöver, Eyke Hüllermeier, Patricia Jimenez, Nils Klowait, Stefan Kopp, Axel-Cyrille Ngonga Ngomo, Amelie Robrecht, Ingrid Scharlau, Lutz Terfloth, Anna-Lisa Vollmer, Henning Wachsmuth,
- Abstract要約: 共構築的説明対話において,大規模言語モデルが説明者として関与する能力について検討する。
以上の結果から,質問の検証,質問者の関与の促進,話題の理解の向上など,共同構築的な行動が示唆された。
- 参考スコア(独自算出の注目度): 23.97414363081048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to generate explanations that are understood by explainees is the quintessence of explainable artificial intelligence. Since understanding depends on the explainee's background and needs, recent research has focused on co-constructive explanation dialogues, where the explainer continuously monitors the explainee's understanding and adapts explanations dynamically. We investigate the ability of large language models (LLMs) to engage as explainers in co-constructive explanation dialogues. In particular, we present a user study in which explainees interact with LLMs, of which some have been instructed to explain a predefined topic co-constructively. We evaluate the explainees' understanding before and after the dialogue, as well as their perception of the LLMs' co-constructive behavior. Our results indicate that current LLMs show some co-constructive behaviors, such as asking verification questions, that foster the explainees' engagement and can improve understanding of a topic. However, their ability to effectively monitor the current understanding and scaffold the explanations accordingly remains limited.
- Abstract(参考訳): 説明者によって理解される説明を生成する能力は、説明可能な人工知能の微妙さである。
理解は説明者の背景やニーズに依存するため,最近の研究は,説明者の理解を継続的に監視し,説明を動的に適用する共同構成的説明対話に焦点を当てている。
本研究では,大規模言語モデル(LLM)が共構築的説明対話において説明者として機能する能力について検討する。
特に,LLMと対話するユーザスタディを提示し,事前に定義されたトピックを共構成的に説明するように指示したユーザスタディについて述べる。
我々は,対話前後における説明者の理解とLLMの協調行動に対する認識を評価する。
以上の結果から,現在のLCMは,質問に対する質問や,説明者の関与の促進,話題の理解の向上など,協調的な行動を示すことが示唆された。
しかし、現在の理解と説明の足場を効果的に監視する能力は依然として限られている。
関連論文リスト
- Explainers' Mental Representations of Explainees' Needs in Everyday Explanations [0.0]
説明において、説明者は説明者の知識の発達と説明に関する関心の変化を精神的に表現する。
XAIは、同様の方法で説明者の要求に反応できるべきです。
本研究では,工芸品の日常的説明における説明者の心的表現について検討した。
論文 参考訳(メタデータ) (2024-11-13T10:53:07Z) - Reasoning with Natural Language Explanations [15.281385727331473]
説明は人間の合理性の根幹をなす特徴であり、学習と一般化を支えている。
自然言語推論(NLI)の研究は、学習や推論において説明が果たす役割を再考し始めている。
論文 参考訳(メタデータ) (2024-10-05T13:15:24Z) - "Is ChatGPT a Better Explainer than My Professor?": Evaluating the Explanation Capabilities of LLMs in Conversation Compared to a Human Baseline [23.81489190082685]
説明は知識共有の基礎を形成し、コミュニケーションの原則、社会的ダイナミクス、学習理論に基づいて構築される。
本研究は、説明者や説明者が会話で採用するさまざまな戦略を理解するための枠組みである説明行為に関する過去の研究を活用し、相手を説明・理解・関与する。
この1年で生成AIが台頭したことにより、LLM(Large Language Models)の能力と、専門家による会話環境における説明能力の強化について、より深く理解したいと思っています。
論文 参考訳(メタデータ) (2024-06-26T17:33:51Z) - An Incomplete Loop: Deductive, Inductive, and Abductive Learning in Large Language Models [99.31449616860291]
現代の言語モデル(LM)は、異なる方法で新しいタスクを実行することを学べる。
次の命令では、ターゲットタスクは自然言語で明示的に記述され、少数ショットプロンプトでは、タスクは暗黙的に指定される。
命令推論では、LMはインコンテキストの例を示し、自然言語のタスク記述を生成するように促される。
論文 参考訳(メタデータ) (2024-04-03T19:31:56Z) - Modeling the Quality of Dialogical Explanations [21.429245729478918]
本研究では,説明者と説明者の相互作用の観点から,説明対話について検討する。
対話の流れを分析し、専門家の対話に現れるものと比較する。
長い入力を処理できる2つの言語モデルを用いてインタラクションフローを符号化する。
論文 参考訳(メタデータ) (2024-03-01T16:49:55Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
大きな言語モデル(LLM)は、内部知識と推論能力を活用することで複雑なタスクに対処するのに熟練している。
これらのモデルのブラックボックスの性質は、意思決定プロセスを説明するタスクを複雑にしている。
自然言語 (NL) による LLM の決定を説明するために FaithLM を紹介した。
論文 参考訳(メタデータ) (2024-02-07T09:09:14Z) - Providing personalized Explanations: a Conversational Approach [0.5156484100374058]
そこで本稿では,説明者との対話を通じて,パーソナライズされた説明を説明人に伝達する手法を提案する。
我々は、説明人が理解し、説明者が認識している最初の主張についての説明が存在する限り、説明人が最初の主張を正当化しているため、会話が終了することを証明する。
論文 参考訳(メタデータ) (2023-07-21T09:34:41Z) - Complementary Explanations for Effective In-Context Learning [77.83124315634386]
大規模言語モデル (LLM) は、説明のインプロンプトから学習する際、顕著な能力を示した。
この研究は、文脈内学習に説明が使用されるメカニズムをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2022-11-25T04:40:47Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLMは、事前訓練されたLMとグラフニューラルネットワークの符号化された表現を、複数の層にわたるモダリティ相互作用操作で融合する新しいモデルである。
GreaseLMは、状況制約と構造化知識の両方の推論を必要とする問題に、より確実に答えることができる。
論文 参考訳(メタデータ) (2022-01-21T19:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。