LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction
- URL: http://arxiv.org/abs/2505.01755v1
- Date: Sat, 03 May 2025 09:11:52 GMT
- Title: LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction
- Authors: Jiesong Bai, Yuhao Yin, Yihang Dong, Xiaofeng Zhang, Chi-Man Pun, Xuhang Chen,
- Abstract summary: Lensless imaging stands out as a promising alternative to conventional lens-based systems.<n>Traditional lensless techniques often require explicit calibrations and extensive pre-processing.<n>We propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations.
- Score: 32.85180149439811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.
Related papers
- Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models [58.98742597810023]
Vision models have to behave in a robust way to disturbances such as noise or blur.<n>This paper studies two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions.<n> Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly.
arXiv Detail & Related papers (2025-04-25T17:23:47Z) - DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration [2.7523980737007414]
Astrophotography presents unique challenges for deep learning due to limited training data.<n>This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting.<n>We propose enhancements to the DIP model's baseline performance through several advanced techniques.
arXiv Detail & Related papers (2025-03-20T09:33:16Z) - A Physics-Informed Blur Learning Framework for Imaging Systems [20.105957982007283]
We propose a physics-informed PSF learning framework for imaging systems.<n>Our framework could achieve both high accuracy and universal applicability.<n>Our approach demonstrates improvements in image quality in simulation and also showcases noticeable visual quality improvements on real captured images.
arXiv Detail & Related papers (2025-02-17T02:54:14Z) - Invertible Neural Warp for NeRF [29.00183106905031]
This paper tackles the simultaneous optimization of pose and Neural Radiance Fields (NeRF)
We propose a novel over parameterized representation that models camera poses as learnable rigid warp functions.
We present results on synthetic and real-world datasets, and demonstrate that our approach outperforms existing baselines in terms of pose estimation and high-fidelity reconstruction.
arXiv Detail & Related papers (2024-07-17T07:14:08Z) - Towards Physics-informed Cyclic Adversarial Multi-PSF Lensless Imaging [0.5371337604556311]
We introduce a novel approach to multi-PSF lensless imaging, employing a dual discriminator cyclic adversarial framework.
We propose a unique generator architecture with a sparse convolutional PSF-aware auxiliary branch, coupled with a forward model integrated into the training loop.
Our method achieves comparable performance to existing PSF-agnostic generative methods for single PSF cases and demonstrates resilience to PSF changes without the need for retraining.
arXiv Detail & Related papers (2024-07-09T10:07:28Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens is a neural lens model for distortion and vignetting that can be used for point projection and ray casting.
It can be used to perform pre-capture calibration using classical calibration targets, and can later be used to perform calibration or refinement during 3D reconstruction.
The model generalizes across many lens types and is trivial to integrate into existing 3D reconstruction and rendering systems.
arXiv Detail & Related papers (2023-04-10T20:09:17Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.