Classical Interfaces for Controlling Cryogenic Quantum Computing Technologies
- URL: http://arxiv.org/abs/2504.18527v1
- Date: Fri, 25 Apr 2025 17:52:10 GMT
- Title: Classical Interfaces for Controlling Cryogenic Quantum Computing Technologies
- Authors: Jack C. Brennan, Joao Barbosa, Chong Li, Meraj Ahmad, Fiheon Imroze, Calum Rose, Wridhdhisom Karar, Manoj Stanley, Hadi Heidari, Nick M. Ridler, Martin Weides,
- Abstract summary: cryogenic quantum systems are among the most mature quantum computing architectures to date.<n>Recent advancements in control cryoelectronics, both semiconducting and superconducting, are covered.<n>A view towards newer methods such as optical and wireless qubit interfaces are also presented.
- Score: 6.667834989995414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum processors have the potential to revolutionise computing on a scale unseen since the development of semiconductor technology in the middle of the 20th century. However, while there is now huge activity and investment in the field, there are a number of challenges that must be overcome before the technology can be fully realised. Of primary concern is the development of the classical technology required to interface with quantum systems, as we push towards a new era of high-performance, large-scale quantum computing. In this review, we briefly discuss some of the main challenges facing the development of universally useful quantum computers and the different architectures being investigated. We are primarily concerned with cryogenic quantum systems. These systems are among the most mature quantum computing architectures to date, and are garnering a lot of both industrial and academic attention. We present and analyse the leading methods of interfacing with quantum processors, both now and for the next generation of larger, multi-qubit systems. Recent advancements in control cryoelectronics, both semiconducting and superconducting, are covered, while a view towards newer methods such as optical and wireless qubit interfaces are also presented.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Towards Quantum-Native Communication Systems: State-of-the-Art, Trends, and Challenges [27.282184604334603]
The survey examines technologies such as quantumdomain (QD) multi-input multi-output, QD non-orthogonal multiple access, quantum secure direct communication, QD resource allocation, QD routing, and QD artificial intelligence.<n>The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Noisy intermediate-scale quantum computers [14.01495582693326]
Quantum computers have made extraordinary progress over the past decade.
We review the most important algorithms and advances in the most promising technical routes.
We illustrate our confidence that solid foundations have been built for the fault-tolerant quantum computer.
arXiv Detail & Related papers (2023-03-07T17:14:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - Quantum computing at the quantum advantage threshold: a down-to-business
review [1.0323063834827415]
We review the state of the art in quantum computing, promising computational models and the most developed physical platforms.
We also discuss potential applications, the requirements posed by these applications and technological pathways towards addressing these requirements.
The review is written in a simple language without equations, and should be accessible to readers with no advanced background in mathematics and physics.
arXiv Detail & Related papers (2022-03-31T16:55:39Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - A practical guide for building superconducting quantum devices [2.7080431315882967]
We present some of the most crucial building blocks developed by the cQED community in recent years.
We aim to provide a synoptic outline of the core techniques that underlie most cQED experiments and offer a practical guide for a novice experimentalist to design, construct, and characterize their first quantum device.
arXiv Detail & Related papers (2021-06-11T05:28:01Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.