Quantum Computation
- URL: http://arxiv.org/abs/2006.02799v2
- Date: Wed, 6 Jan 2021 08:43:39 GMT
- Title: Quantum Computation
- Authors: Bhupesh Bishnoi
- Abstract summary: We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this research notebook in the four-part, quantum computation and
applications, quantum computation and algorithms, quantum communication
protocol, and universal quantum computation for quantum engineers, researchers,
and scientists, we will discuss and summarized the core principles and
practical application areas of quantum computation. We first discuss the
historical prospect from which quantum computing emerged from the early days of
computing before the dominance of modern microprocessors. And the re-emergence
of that quest with the sunset of Moore's law in the current decade. The mapping
of computation onto the behavior of physical systems is a historical challenge
vividly illustrate by considering how quantum bits may be realized with a wide
variety of physical systems, spanning from atoms to photons, using
semiconductors and superconductors. The computing algorithms also change with
the underline variety of physical systems and the possibility of encoding the
information in the quantum systems compared to the ordinary classical computers
because of these new abilities afforded by quantum systems. We will also
consider the emerging engineering, science, technology, business, and social
implications of these advancements. We will describe a substantial difference
between quantum and classical computation paradigm. After we will discuss and
understand engineering challenges currently faced by developers of the real
quantum computation system. We will evaluate the essential technology required
for quantum computers to be able to function correctly. Later on, discuss the
potential business application, which can be touch by these new computation
capabilities. We utilize the IBM Quantum Experience to run the real-world
problem, although on a small scale.
Related papers
- Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study [11.29246196323319]
We describe NASA's work in assessing and advancing the potential of quantum computing.
We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware and with simulations.
This work also includes physics-inspired classical algorithms that can be used at application scale today.
arXiv Detail & Related papers (2024-06-21T19:05:42Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Quantum algorithms for quantum chemistry and quantum materials science [2.867517731896504]
We briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer.
We take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
arXiv Detail & Related papers (2020-01-10T22:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.