論文の概要: Feature Selection via GANs (GANFS): Enhancing Machine Learning Models for DDoS Mitigation
- arxiv url: http://arxiv.org/abs/2504.18566v1
- Date: Mon, 21 Apr 2025 20:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.876911
- Title: Feature Selection via GANs (GANFS): Enhancing Machine Learning Models for DDoS Mitigation
- Title(参考訳): GAN(GANFS)による機能選択 - DDoS緩和のためのマシンラーニングモデルの強化
- Authors: Harsh Patel,
- Abstract要約: 本稿では,分散型サービス拒否(DDoS)攻撃を検出するGANFS(Generative Adversarial Network-based Feature Selection)手法を提案する。
GANを攻撃トラフィックに限定して訓練することにより、GANFSは、完全な監視に頼ることなく、機能の重要性を効果的にランク付けする。
その結果は、より適応的でスケーラブルな検出システムを構築するために、生成学習モデルをサイバーセキュリティパイプラインに統合する可能性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed Denial of Service (DDoS) attacks represent a persistent and evolving threat to modern networked systems, capable of causing large-scale service disruptions. The complexity of such attacks, often hidden within high-dimensional and redundant network traffic data, necessitates robust and intelligent feature selection techniques for effective detection. Traditional methods such as filter-based, wrapper-based, and embedded approaches, each offer strengths but struggle with scalability or adaptability in complex attack environments. In this study, we explore these existing techniques through a detailed comparative analysis and highlight their limitations when applied to large-scale DDoS detection tasks. Building upon these insights, we introduce a novel Generative Adversarial Network-based Feature Selection (GANFS) method that leverages adversarial learning dynamics to identify the most informative features. By training a GAN exclusively on attack traffic and employing a perturbation-based sensitivity analysis on the Discriminator, GANFS effectively ranks feature importance without relying on full supervision. Experimental evaluations using the CIC-DDoS2019 dataset demonstrate that GANFS not only improves the accuracy of downstream classifiers but also enhances computational efficiency by significantly reducing feature dimensionality. These results point to the potential of integrating generative learning models into cybersecurity pipelines to build more adaptive and scalable detection systems.
- Abstract(参考訳): DDoS(Distributed Denial of Service)攻撃は、現代的なネットワークシステムに対する永続的かつ進化的な脅威であり、大規模なサービス障害を引き起こす可能性がある。
このような攻撃の複雑さは、しばしば高次元および冗長なネットワークトラフィックデータの中に隠され、効果的な検出のために堅牢でインテリジェントな特徴選択技術を必要とする。
フィルターベース、ラッパーベース、組込みアプローチといった従来の手法は、それぞれ長所を提供するが、複雑な攻撃環境においてスケーラビリティや適応性に苦労する。
本研究では,これらの手法を詳細な比較分析により検討し,大規模DDoS検出タスクに適用した場合の限界を明らかにする。
これらの知見に基づいて,敵対学習のダイナミクスを活用し,最も有意義な特徴を識別するGANFS(Generative Adversarial Network-based Feature Selection)手法を提案する。
GANは、攻撃トラフィックのみを訓練し、ディスクリミネーター上で摂動に基づく感度分析を採用することにより、完全な監視に頼ることなく、機能の重要性を効果的にランク付けする。
CIC-DDoS2019データセットを用いた実験により、GANFSは下流分類器の精度を向上するだけでなく、特徴次元を著しく減少させることで計算効率を向上させることを示した。
これらの結果は、より適応的でスケーラブルな検出システムを構築するために、生成学習モデルをサイバーセキュリティパイプラインに統合する可能性を示している。
関連論文リスト
- Exploring Feature Importance and Explainability Towards Enhanced ML-Based DoS Detection in AI Systems [3.3150909292716477]
Denial of Service(DoS)攻撃は、AIシステムセキュリティの領域において重大な脅威となる。
統計的および機械学習(ML)に基づくDoS分類と検出アプローチは、幅広い特徴選択メカニズムを使用して、ネットワークトラフィックデータセットから特徴サブセットを選択する。
本稿では,MLによるDoS攻撃検出における特徴選択の重要性について検討する。
論文 参考訳(メタデータ) (2024-11-04T19:51:08Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
我々は、DDoS攻撃を検出するための新しいディープラーニングベースの技術を導入する。
本稿では,一意な双対空間損失関数を利用する新しい双対空間原型ネットワークを提案する。
このアプローチは、潜在空間における表現学習の強みを生かしている。
論文 参考訳(メタデータ) (2024-06-04T03:22:52Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。