論文の概要: BELL: Benchmarking the Explainability of Large Language Models
- arxiv url: http://arxiv.org/abs/2504.18572v1
- Date: Tue, 22 Apr 2025 11:15:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.88063
- Title: BELL: Benchmarking the Explainability of Large Language Models
- Title(参考訳): BELL: 大規模言語モデルの説明可能性のベンチマーク
- Authors: Syed Quiser Ahmed, Bharathi Vokkaliga Ganesh, Jagadish Babu P, Karthick Selvaraj, ReddySiva Naga Parvathi Devi, Sravya Kappala,
- Abstract要約: 大規模言語モデルは自然言語処理において顕著な能力を示してきたが、意思決定プロセスは透明性を欠いていることが多い。
本稿では,大規模言語モデルの説明可能性を評価するためのベンチマーク手法であるベンチマーク手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models have demonstrated remarkable capabilities in natural language processing, yet their decision-making processes often lack transparency. This opaqueness raises significant concerns regarding trust, bias, and model performance. To address these issues, understanding and evaluating the interpretability of LLMs is crucial. This paper introduces a standardised benchmarking technique, Benchmarking the Explainability of Large Language Models, designed to evaluate the explainability of large language models.
- Abstract(参考訳): 大規模言語モデルは自然言語処理において顕著な能力を示してきたが、意思決定プロセスは透明性を欠いていることが多い。
この不透明さは、信頼、バイアス、モデルパフォーマンスに関する重要な懸念を提起します。
これらの課題に対処するためには,LLMの解釈可能性の理解と評価が重要である。
本稿では,大規模言語モデルの説明可能性を評価するためのベンチマーク手法であるベンチマーク手法を提案する。
関連論文リスト
- LExT: Towards Evaluating Trustworthiness of Natural Language Explanations [10.77745803401336]
本稿では,自然言語の説明の信頼性を定量化し,妥当性と信条のバランスをとる枠組みを提案する。
パブリックな医療データセットを用いて、ドメインに依存しないフレームワークを医療領域に適用し、6つのモデルを評価する。
以上の結果から,信頼に値する説明を生み出す能力に有意な差異が認められた。
論文 参考訳(メタデータ) (2025-04-08T17:16:52Z) - XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
時系列予測は、特に正確な予測に依存するステークホルダーにとって、意思決定を支援する。
伝統的に説明可能なAI(XAI)メソッドは、機能や時間的重要性を基盤とするものであり、専門家の知識を必要とすることが多い。
時系列データにおける複雑な因果関係のため,予測NLEの評価は困難である。
論文 参考訳(メタデータ) (2024-10-18T05:16:39Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
大きな言語モデル(LLM)は、内部知識と推論能力を活用することで複雑なタスクに対処するのに熟練している。
これらのモデルのブラックボックスの性質は、意思決定プロセスを説明するタスクを複雑にしている。
自然言語 (NL) による LLM の決定を説明するために FaithLM を紹介した。
論文 参考訳(メタデータ) (2024-02-07T09:09:14Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models [27.841725567976315]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させてきたが、その解釈可能性の欠如が大きな関心事となっている。
本稿では,LLMが即座に解釈可能な埋め込みを学習できるネットワークベースのホワイトボックスフレームワークであるproto-lmを紹介する。
提案手法の適用性と解釈性は,幅広いNLPタスクの実験を通じて実証され,性能を犠牲にすることなく解釈可能なモデルを作成する新たな可能性を示す。
論文 参考訳(メタデータ) (2023-11-03T05:55:32Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
大規模言語モデルは、さまざまな自然言語処理タスクにおいて、非常に大きなパフォーマンスを示しています。
LLMが人間のような認知能力を達成できるのか、あるいはこれらのモデルがいまだに根本から取り囲まれているのかは不明だ。
我々は,抽象的推論タスクの記憶以上の言語モデルを評価するための新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-31T04:50:29Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Emergent Linguistic Structures in Neural Networks are Fragile [20.692540987792732]
大規模言語モデル (LLM) は自然言語処理タスクにおいて高い性能を示すと報告されている。
言語表現の一貫性と堅牢性を評価するための枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T15:43:57Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。