Privacy-Preserving Diffusion Model Using Homomorphic Encryption
- URL: http://arxiv.org/abs/2403.05794v2
- Date: Thu, 2 May 2024 03:46:16 GMT
- Title: Privacy-Preserving Diffusion Model Using Homomorphic Encryption
- Authors: Yaojian Chen, Qiben Yan,
- Abstract summary: We introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion.
We propose a novel min-distortion method that enables efficient partial image encryption.
We successfully implement HE-based privacy-preserving stable diffusion inference.
- Score: 5.282062491549009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion, which primarily focuses on protecting the denoising phase of the diffusion process. HE-Diffusion is a tailored encryption framework specifically designed to align with the unique architecture of stable diffusion, ensuring both privacy and functionality. To address the inherent computational challenges, we propose a novel min-distortion method that enables efficient partial image encryption, significantly reducing the overhead without compromising the model's output quality. Furthermore, we adopt a sparse tensor representation to expedite computational operations, enhancing the overall efficiency of the privacy-preserving diffusion process. We successfully implement HE-based privacy-preserving stable diffusion inference. The experimental results show that HE-Diffusion achieves 500 times speedup compared with the baseline method, and reduces time cost of the homomorphically encrypted inference to the minute level. Both the performance and accuracy of the HE-Diffusion are on par with the plaintext counterpart. Our approach marks a significant step towards integrating advanced cryptographic techniques with state-of-the-art generative models, paving the way for privacy-preserving and efficient image generation in critical applications.
Related papers
- Masked Autoencoders Are Effective Tokenizers for Diffusion Models [56.08109308294133]
MAETok is an autoencoder that learns semantically rich latent space while maintaining reconstruction fidelity.
MaETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation.
arXiv Detail & Related papers (2025-02-05T18:42:04Z) - Fed-AugMix: Balancing Privacy and Utility via Data Augmentation [15.325493418326117]
Gradient leakage attacks pose a significant threat to the privacy guarantees of federated learning.
We propose a novel data augmentation-based framework designed to achieve a favorable privacy-utility trade-off.
Our framework incorporates the AugMix algorithm at the client level, enabling data augmentation with controllable severity.
arXiv Detail & Related papers (2024-12-18T13:05:55Z) - FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution [48.88184541515326]
We propose a simple and effective method, named FaithDiff, to fully harness the power of latent diffusion models (LDMs) for faithful image SR.
In contrast to existing diffusion-based SR methods that freeze the diffusion model pre-trained on high-quality images, we propose to unleash the diffusion prior to identify useful information and recover faithful structures.
arXiv Detail & Related papers (2024-11-27T23:58:03Z) - Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings [23.687702204151872]
We introduce novel methods for adapting diffusion models under differential privacy constraints, enabling privacy-preserving style and content transfer without fine-tuning.
We apply these methods to Stable Diffusion for style adaptation using two private datasets: a collection of artworks by a single artist and pictograms from the Paris 2024 Olympics.
Experimental results show that the TI-based adaptation achieves superior fidelity in style transfer, even under strong privacy guarantees.
arXiv Detail & Related papers (2024-11-22T00:09:49Z) - Edge-preserving noise for diffusion models [4.435514696080208]
We present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM)
In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise.
We show that our model's generative process converges faster to results that more closely match the target distribution.
arXiv Detail & Related papers (2024-10-02T13:29:52Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
We propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation.
This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
arXiv Detail & Related papers (2023-06-02T20:19:19Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees.
We propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications.
We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation.
arXiv Detail & Related papers (2023-05-31T19:38:12Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.