Training Large Language Models to Reason via EM Policy Gradient
- URL: http://arxiv.org/abs/2504.18587v1
- Date: Thu, 24 Apr 2025 01:31:05 GMT
- Title: Training Large Language Models to Reason via EM Policy Gradient
- Authors: Tianbing Xu,
- Abstract summary: We introduce an off-policy reinforcement learning algorithm, EM Policy Gradient, to enhance LLM reasoning.<n>We evaluate the effectiveness of EM Policy Gradient on the GSM8K and MATH (HARD) datasets.<n>Models fine-tuned with our method exhibit cognitive behaviors, such as sub-problem decomposition, self-verification, and backtracking.
- Score: 0.27195102129094995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, foundation models such as OpenAI's O1 and O3, along with DeepSeek's R1, have demonstrated strong reasoning capacities and problem-solving skills acquired through large-scale reinforcement learning (RL), with wide applications in mathematics, coding, science, intelligent agents, and virtual assistants. In this work, we introduce an off-policy reinforcement learning algorithm, EM Policy Gradient, aimed at enhancing LLM reasoning by optimizing expected return over reasoning trajectories. We frame the reasoning task as an Expectation-Maximization (EM) optimization problem, alternating between sampling diverse rationale trajectories and performing reward-guided fine-tuning. Unlike PPO and GRPO, which rely on complex importance weights and heuristic clipping, our method provides a simpler, more principled off-policy policy gradient approach, eliminating these complexities while maintaining strong performance. We evaluate the effectiveness of EM Policy Gradient on the GSM8K and MATH (HARD) datasets, where it achieves performance comparable to or slightly surpassing the state-of-the-art GRPO, while offering additional advantages in scalability, simplicity, and reasoning conciseness. Moreover, models fine-tuned with our method exhibit cognitive behaviors, such as sub-problem decomposition, self-verification, and backtracking, highlighting its potential to enhance both the interpretability and robustness of LLM reasoning.
Related papers
- COPO: Consistency-Aware Policy Optimization [17.328515578426227]
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks.<n>Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization.<n>We propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency.
arXiv Detail & Related papers (2025-08-06T07:05:18Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - A Technical Survey of Reinforcement Learning Techniques for Large Language Models [33.38582292895673]
Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs)<n>RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning.<n> persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation.
arXiv Detail & Related papers (2025-07-05T19:13:00Z) - Vision-EKIPL: External Knowledge-Infused Policy Learning for Visual Reasoning [17.421901873720156]
This paper proposes a novel RL framework called textbfVision-EKIPL.<n>It introduces high-quality actions generated by external auxiliary models during the RL training process to guide the optimization of the policy model.<n>It achieves up to a 5% performance improvement on the Reason-RFT-CoT Benchmark compared to the state-of-the-art (SOTA)
arXiv Detail & Related papers (2025-06-07T16:37:46Z) - On-Policy RL with Optimal Reward Baseline [109.47676554514193]
On-Policy RL with Optimal reward baseline (OPO) is a novel and simplified reinforcement learning algorithm.<n>OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration.<n>Results demonstrate OPO's superior performance and training stability without additional models or regularization terms.
arXiv Detail & Related papers (2025-05-29T15:58:04Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged history-Resampling Policy optimization surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.<n>We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
arXiv Detail & Related papers (2025-04-19T13:06:03Z) - GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning [17.544255491384046]
We propose a minimalist RL approach termed Group Policy Gradient (GPG)<n>Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions.<n>Our approach achieves superior performance without relying on auxiliary techniques or adjustments.
arXiv Detail & Related papers (2025-04-03T12:53:41Z) - A Survey on Mathematical Reasoning and Optimization with Large Language Models [0.5439020425819]
Recent advancements in Large Language Models (LLMs) have significantly improved AI-driven mathematical reasoning, theorem proving, and optimization techniques.
This survey explores the evolution of mathematical problem-solving in AI, from early statistical learning approaches to modern deep learning and transformer-based methodologies.
arXiv Detail & Related papers (2025-03-22T10:49:32Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning [16.10753846850319]
Continual learning allows models to persistently acquire and retain information.<n> catastrophic forgetting can severely impair model performance.<n>We introduce a novel framework termed Optimally-Weighted Mean Discrepancy (OWMMD), which imposes penalties on representation alterations.
arXiv Detail & Related papers (2025-01-21T13:33:45Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.