論文の概要: Toward Personalizing Quantum Computing Education: An Evolutionary LLM-Powered Approach
- arxiv url: http://arxiv.org/abs/2504.18603v1
- Date: Thu, 24 Apr 2025 21:53:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.911361
- Title: Toward Personalizing Quantum Computing Education: An Evolutionary LLM-Powered Approach
- Title(参考訳): 量子コンピューティング教育のパーソナライズに向けて : LLMを活用した進化的アプローチ
- Authors: Iizalaarab Elhaimeur, Nikos Chrisochoides,
- Abstract要約: 本稿では,量子コンピューティング教育のためのインテリジェント・インストラクション・アシスタントについて紹介する。
このシステムは知識グラフ拡張アーキテクチャと2つの特殊言語モデル(LLM)エージェントを組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing education faces significant challenges due to its complexity and the limitations of current tools; this paper introduces a novel Intelligent Teaching Assistant for quantum computing education and details its evolutionary design process. The system combines a knowledge-graph-augmented architecture with two specialized Large Language Model (LLM) agents: a Teaching Agent for dynamic interaction, and a Lesson Planning Agent for lesson plan generation. The system is designed to adapt to individual student needs, with interactions meticulously tracked and stored in a knowledge graph. This graph represents student actions, learning resources, and relationships, aiming to enable reasoning about effective learning pathways. We describe the implementation of the system, highlighting the challenges encountered and the solutions implemented, including introducing a dual-agent architecture where tasks are separated, all coordinated through a central knowledge graph that maintains system awareness, and a user-facing tag system intended to mitigate LLM hallucination and improve user control. Preliminary results illustrate the system's potential to capture rich interaction data, dynamically adapt lesson plans based on student feedback via a tag system in simulation, and facilitate context-aware tutoring through the integrated knowledge graph, though systematic evaluation is required.
- Abstract(参考訳): 本稿では,量子コンピューティング教育のためのIntelligent Teaching Assistantを紹介し,その進化的設計過程を詳述する。
このシステムは、知識グラフの拡張されたアーキテクチャと、2つの専門的なLarge Language Model (LLM)エージェント(動的相互作用のための指導エージェント)と、レッスンプラン生成のための授業計画エージェントを組み合わせた。
このシステムは、個々の学生のニーズに適応するように設計されており、インタラクションを慎重に追跡し、知識グラフに格納する。
このグラフは学生の行動、学習資源、関係を表現し、効果的な学習経路の推論を可能にする。
本稿では,タスクを分離したデュアルエージェントアーキテクチャを導入し,システム意識を維持する中央知識グラフと,LCM幻覚の緩和とユーザコントロールの改善を目的としたユーザ対応タグシステムについて述べる。
予備的な結果は、シミュレーションにおいて、リッチなインタラクションデータを捕捉し、シミュレーションにおいてタグシステムを介して学生のフィードバックに基づいて動的に授業計画を適応し、統合知識グラフを通してコンテキスト認識学習を容易にするシステムの可能性を示しているが、体系的な評価が必要である。
関連論文リスト
- Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
グラフ構造上の課題は、その非線形で複雑な性質のために本質的に困難である。
本研究では,高次構造的特徴を正確に保存するために,グラフを画像に変換する手法を提案する。
マルチモーダルな大規模言語モデルと単純な検索手法を組み合わせた革新的なパラダイムを生かし、新しい効果的なフレームワークを開発することを目指す。
論文 参考訳(メタデータ) (2025-01-21T08:28:10Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Exploring Graph-based Knowledge: Multi-Level Feature Distillation via Channels Relational Graph [8.646512035461994]
視覚的なタスクでは、大きな教師モデルは重要な特徴と深い情報を取得し、パフォーマンスを向上する。
マルチレベル特徴アライメント戦略を含むグラフ知識に基づく蒸留フレームワークを提案する。
蒸留工程におけるスペクトル埋め込み (SE) は, 学生の特徴空間と教師ネットワークに類似した関係知識と構造的複雑さを融合させる重要な手法である。
論文 参考訳(メタデータ) (2024-05-14T12:37:05Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
本稿では,電子情報分野における知識抽出,視覚的KG構築,グラフ融合のためのフレームワークを提案する。
我々の目標は、学生の学習効率を高め、AIによって実現される新しい教育パラダイムを探求することである。
論文 参考訳(メタデータ) (2023-05-08T09:25:41Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - LENAS: Learning-based Neural Architecture Search and Ensemble for 3D Radiotherapy Dose Prediction [42.38793195337463]
本稿では3次元放射線治療線量予測のための知識蒸留とニューラルネットワーク検索を統合した,学習に基づく新しいアンサンブル手法 LENAS を提案する。
当社のアプローチは、巨大なアーキテクチャ空間から各ブロックを徹底的に検索して、有望なパフォーマンスを示す複数のアーキテクチャを識別することから始まります。
モデルアンサンブルによってもたらされる複雑さを軽減するため、教師-学生パラダイムを採用し、複数の学習ネットワークからの多様な出力を監視信号として活用する。
論文 参考訳(メタデータ) (2021-06-12T10:08:52Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。