Periodic Online Testing for Sparse Systolic Tensor Arrays
- URL: http://arxiv.org/abs/2504.18628v1
- Date: Fri, 25 Apr 2025 18:10:45 GMT
- Title: Periodic Online Testing for Sparse Systolic Tensor Arrays
- Authors: Christodoulos Peltekis, Chrysostomos Nicopoulos, Giorgos Dimitrakopoulos,
- Abstract summary: Modern Machine Learning (ML) applications often benefit from structured sparsity, a technique that efficiently reduces model complexity and simplifies handling of sparse data in hardware.<n>This paper introduces an online error-checking technique capable of detecting and locating permanent faults within sparse systolic tensor arrays before vectors begin.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern Machine Learning (ML) applications often benefit from structured sparsity, a technique that efficiently reduces model complexity and simplifies handling of sparse data in hardware. Sparse systolic tensor arrays - specifically designed to accelerate these structured-sparse ML models - play a pivotal role in enabling efficient computations. As ML is increasingly integrated into safety-critical systems, it is of paramount importance to ensure the reliability of these systems. This paper introduces an online error-checking technique capable of detecting and locating permanent faults within sparse systolic tensor arrays before computation begins. The new technique relies on merely four test vectors and exploits the weight values already loaded within the systolic array to comprehensively test the system. Fault-injection campaigns within the gate-level netlist, while executing three well-established Convolutional Neural Networks (CNN), validate the efficiency of the proposed approach, which is shown to achieve very high fault coverage, while incurring minimal performance and area overheads.
Related papers
- Distributed Log-driven Anomaly Detection System based on Evolving Decision Making [4.183506125389502]
CEDLog is a framework that implements distributed computing for scalable processing by integrating Apache Airflow and Dask.<n>In CEDLog, anomalies are detected through the synthesis of Multi-layer Perceptron (MLP) and Graph Convolutional Networks (GCNs) using critical features present in event logs.
arXiv Detail & Related papers (2025-04-03T06:50:30Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)<n>By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.<n>We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns [1.1965844936801797]
Convolutional neural networks (ConvNets) exert severe demands on local device resources.
This brief presents work toward utilizing static convolutional filters to design efficient ConvNet architectures.
arXiv Detail & Related papers (2024-07-20T10:18:42Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
We propose the autoencoder-based low-rank filter-sharing technique technique (ALF)
ALF shows a reduction of 70% in network parameters, 61% in operations and 41% in execution time, with minimal loss in accuracy.
arXiv Detail & Related papers (2020-07-27T09:01:22Z) - Making Convolutions Resilient via Algorithm-Based Error Detection
Techniques [2.696566807900575]
Convolutional Neural Networks (CNNs) accurately process real-time telemetry.
CNNs must execute correctly in the presence of hardware faults.
Full duplication provides the needed assurance but incurs a 100% overhead.
arXiv Detail & Related papers (2020-06-08T23:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.