Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns
- URL: http://arxiv.org/abs/2407.14831v1
- Date: Sat, 20 Jul 2024 10:18:42 GMT
- Title: Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns
- Authors: Christos Kyrkou,
- Abstract summary: Convolutional neural networks (ConvNets) exert severe demands on local device resources.
This brief presents work toward utilizing static convolutional filters to design efficient ConvNet architectures.
- Score: 1.1965844936801797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-efficiency deep learning (DL) models are necessary not only to facilitate their use in devices with limited resources but also to improve resources required for training. Convolutional neural networks (ConvNets) typically exert severe demands on local device resources and this conventionally limits their adoption within mobile and embedded platforms. This brief presents work toward utilizing static convolutional filters generated from the space of local binary patterns (LBPs) and Haar features to design efficient ConvNet architectures. These are referred to as Structured Ternary Patterns (STePs) and can be generated during network initialization in a systematic way instead of having learnable weight parameters thus reducing the total weight updates. The ternary values require significantly less storage and with the appropriate low-level implementation, can also lead to inference improvements. The proposed approach is validated using four image classification datasets, demonstrating that common network backbones can be made more efficient and provide competitive results. It is also demonstrated that it is possible to generate completely custom STeP-based networks that provide good trade-offs for on-device applications such as unmanned aerial vehicle (UAV)-based aerial vehicle detection. The experimental results show that the proposed method maintains high detection accuracy while reducing the trainable parameters by 40-80%. This work motivates further research toward good priors for non-learnable weights that can make DL architectures more efficient without having to alter the network during or after training.
Related papers
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - Compact CNN Structure Learning by Knowledge Distillation [34.36242082055978]
We propose a framework that leverages knowledge distillation along with customizable block-wise optimization to learn a lightweight CNN structure.
Our method results in a state of the art network compression while being capable of achieving better inference accuracy.
In particular, for the already compact network MobileNet_v2, our method offers up to 2x and 5.2x better model compression.
arXiv Detail & Related papers (2021-04-19T10:34:22Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.