From Prompts to Propositions: A Logic-Based Lens on Student-LLM Interactions
- URL: http://arxiv.org/abs/2504.18691v1
- Date: Fri, 25 Apr 2025 20:58:16 GMT
- Title: From Prompts to Propositions: A Logic-Based Lens on Student-LLM Interactions
- Authors: Ali Alfageeh, Sadegh AlMahdi Kazemi Zarkouei, Daye Nam, Daniel Prol, Matin Amoozadeh, Souti Chattopadhyay, James Prather, Paul Denny, Juho Leinonen, Michael Hilton, Sruti Srinivasa Ragavan, Mohammad Amin Alipour,
- Abstract summary: We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints.<n>We use this approach to analyze a dataset of 1,872 prompts from 203 students solving programming tasks.<n>We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly.
- Score: 9.032718302451501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture the semantic evolution of prompts. Objective. In this paper, we investigate whether students prompts can be systematically analyzed using propositional logic constraints. We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into effective and ineffective strategies. Method. We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints. The constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a dataset of 1,872 prompts from 203 students solving introductory programming tasks. Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where specific interventions could be most helpful to students for refining their prompts. Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time support.
Related papers
- Probing the Unknown: Exploring Student Interactions with Probeable Problems at Scale in Introductory Programming [4.1153199495993364]
This study explores the use of Probeable Problems'', automatically gradable tasks that have deliberately vague or incomplete specifications.<n>Such problems require students to submit test inputs, or probes', to clarify requirements before implementation.<n> Systematic strategies, such as thoroughly exploring expected behavior before coding, resulted in fewer incorrect code submissions and correlated with course success.
arXiv Detail & Related papers (2025-04-16T02:50:00Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Pointwise Mutual Information as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that the pointwise mutual information between a context and a question is an effective gauge for language model performance.<n>We propose two methods that use the pointwise mutual information between a document and a question as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Task Facet Learning: A Structured Approach to Prompt Optimization [14.223730629357178]
We propose an algorithm that learns multiple facets of a task from a set of training examples.
The resulting algorithm, UniPrompt, consists of a generative model to generate initial candidates for each prompt section.
Empirical evaluation on multiple datasets and a real-world task shows that prompts generated using UniPrompt obtain higher accuracy than human-tuned prompts.
arXiv Detail & Related papers (2024-06-15T04:54:26Z) - Interactive Analysis of LLMs using Meaningful Counterfactuals [22.755345889167934]
Counterfactual examples are useful for exploring the decision boundaries of machine learning models.
How can we apply counterfactual-based methods to analyze and explain LLMs?
We propose a novel algorithm for generating batches of complete and meaningful textual counterfactuals.
In our experiments, 97.2% of the counterfactuals are grammatically correct.
arXiv Detail & Related papers (2024-04-23T19:57:03Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs [58.620269228776294]
We propose a task-agnostic framework for resolving ambiguity by asking users clarifying questions.
We evaluate systems across three NLP applications: question answering, machine translation and natural language inference.
We find that intent-sim is robust, demonstrating improvements across a wide range of NLP tasks and LMs.
arXiv Detail & Related papers (2023-11-16T00:18:50Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic.
The adversarial prompts are then employed in diverse tasks including sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving.
Our findings demonstrate that contemporary Large Language Models are not robust to adversarial prompts.
arXiv Detail & Related papers (2023-06-07T15:37:00Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
This paper proposes a new method, Active-Prompt, to adapt large language models to different tasks.
By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty.
Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks.
arXiv Detail & Related papers (2023-02-23T18:58:59Z) - Shepherd Pre-trained Language Models to Develop a Train of Thought: An
Iterative Prompting Approach [30.117038793151004]
Pre-trained Language Models (PLMs) have been shown incapable of recalling knowledge to solve tasks requiring complex & multi-step inference procedures.
Similar to how humans develop a "train of thought" for these tasks, how can we equip PLMs with such abilities?
We propose an iterative context-aware prompter, which addresses these limitations by learning to dynamically synthesize conditioned prompts on the current step's contexts.
arXiv Detail & Related papers (2022-03-16T04:12:20Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
We show how to reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones.
We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge.
We empirically verify our theoretical findings in simple simulated domains.
arXiv Detail & Related papers (2020-07-01T19:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.