Building Scalable AI-Powered Applications with Cloud Databases: Architectures, Best Practices and Performance Considerations
- URL: http://arxiv.org/abs/2504.18793v1
- Date: Sat, 26 Apr 2025 04:17:46 GMT
- Title: Building Scalable AI-Powered Applications with Cloud Databases: Architectures, Best Practices and Performance Considerations
- Authors: Santosh Bhupathi,
- Abstract summary: The rapid adoption of AI-powered applications demands high-performance, scalable, and efficient cloud database solutions.<n>This paper explores how cloud-native databases enable AI-driven applications by leveraging purpose-built technologies.<n>Performance benchmarks, scalability considerations, and cost-efficient strategies are evaluated to guide the design of AI-enabled applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid adoption of AI-powered applications demands high-performance, scalable, and efficient cloud database solutions, as traditional architectures often struggle with AI-driven workloads requiring real-time data access, vector search, and low-latency queries. This paper explores how cloud-native databases enable AI-driven applications by leveraging purpose-built technologies such as vector databases (pgvector), graph databases (AWS Neptune), NoSQL stores (Amazon DocumentDB, DynamoDB), and relational cloud databases (Aurora MySQL and PostgreSQL). It presents architectural patterns for integrating AI workloads with cloud databases, including Retrieval-Augmented Generation (RAG) [1] with LLMs, real-time data pipelines, AI-driven query optimization, and embeddings-based search. Performance benchmarks, scalability considerations, and cost-efficient strategies are evaluated to guide the design of AI-enabled applications. Real-world case studies from industries such as healthcare, finance, and customer experience illustrate how enterprises utilize cloud databases to enhance AI capabilities while ensuring security, governance, and compliance with enterprise and regulatory standards. By providing a comprehensive analysis of AI and cloud database integration, this paper serves as a practical guide for researchers, architects, and enterprises to build next-generation AI applications that optimize performance, scalability, and cost efficiency in cloud environments.
Related papers
- Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Orchestrating Agents and Data for Enterprise: A Blueprint Architecture for Compound AI [11.859180018313147]
We propose a 'blueprint architecture' for compound AI systems for orchestrating agents and data for enterprise applications.<n>Existing proprietary models and APIs in the enterprise are mapped to 'agents', defined in an 'agent registry'<n>Agents can utilize proprietary data through a 'data registry' that similarly registers enterprise data of various modalities.
arXiv Detail & Related papers (2025-04-10T22:19:41Z) - AnDB: Breaking Boundaries with an AI-Native Database for Universal Semantic Analysis [11.419119182421964]
AnDB is an AI-native database that supports traditional O workloads and AI-driven tasks.<n>AnDB allows users to perform semantic queries using intuitive-like statements without requiring AI expertise.<n>AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
arXiv Detail & Related papers (2025-02-19T15:15:59Z) - Top Ten Challenges Towards Agentic Neural Graph Databases [56.92578700681306]
Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but lack advanced inference capabilities.<n>This paper introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core functionalities.
arXiv Detail & Related papers (2025-01-24T04:06:50Z) - Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models [64.28420991770382]
Data-Juicer 2.0 is a data processing system backed by data processing operators spanning text, image, video, and audio modalities.<n>It supports more critical tasks including data analysis, annotation, and foundation model post-training.<n>It has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI.
arXiv Detail & Related papers (2024-12-23T08:29:57Z) - Cloud Platforms for Developing Generative AI Solutions: A Scoping Review of Tools and Services [0.27649989102029926]
Generative AI is transforming enterprise application development by enabling machines to create content, code, and designs.<n>Cloud computing addresses these needs by offering infrastructure to train, deploy, and scale generative AI models.<n>This review examines cloud services for generative AI, focusing on key providers like Amazon Web Services (AWS), Microsoft Azure, Google Cloud, IBM Cloud, Oracle Cloud, and Alibaba Cloud.
arXiv Detail & Related papers (2024-12-08T19:49:07Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - NeurDB: On the Design and Implementation of an AI-powered Autonomous Database [27.13518136879994]
This paper introduces NeurDB, an AI-powered autonomous database.<n>NeurDB deepens the fusion of AI and databases with adaptability to data and workload drift.<n> Empirical evaluations demonstrate that NeurDB substantially outperforms existing solutions in managing AI analytics tasks.
arXiv Detail & Related papers (2024-08-06T07:48:51Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
In recent years, the integration of artificial intelligence (AI) and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications.
This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency.
arXiv Detail & Related papers (2023-04-26T15:38:00Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Reproducible Performance Optimization of Complex Applications on the
Edge-to-Cloud Continuum [55.6313942302582]
We propose a methodology to support the optimization of real-life applications on the Edge-to-Cloud Continuum.
Our approach relies on a rigorous analysis of possible configurations in a controlled testbed environment to understand their behaviour.
Our methodology can be generalized to other applications in the Edge-to-Cloud Continuum.
arXiv Detail & Related papers (2021-08-04T07:35:14Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.