Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
- URL: http://arxiv.org/abs/2505.01821v1
- Date: Sat, 03 May 2025 13:55:38 GMT
- Title: Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
- Authors: Jing Liu, Yao Du, Kun Yang, Yan Wang, Xiping Hu, Zehua Wang, Yang Liu, Peng Sun, Azzedine Boukerche, Victor C. M. Leung,
- Abstract summary: Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
- Score: 59.52058740470727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
Related papers
- INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
In-network AI is a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) on network infrastructure.<n>This paper provides a comprehensive analysis of optimizing in-network computation for AI.<n>It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities.
arXiv Detail & Related papers (2025-05-30T06:47:55Z) - Onboard Optimization and Learning: A Survey [10.511932152633253]
Onboard learning is a transformative approach in edge AI, enabling real-time data processing, decision-making, and adaptive model training directly on resource-constrained devices.<n>However, onboard learning faces challenges such as limited computational resources, high inference costs, and security vulnerabilities.<n>This survey explores techniques that optimize model efficiency, accelerate inference, and support collaborative learning across distributed devices.
arXiv Detail & Related papers (2025-05-07T07:47:14Z) - Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures [9.21746609806009]
complexity of Intelligent Transportation Systems (ITS) has led to significant interest in computational offloading to external infrastructures such as edge servers, vehicular nodes, and UAVs.<n>Recent advances in Deep Reinforcement Learning (DRL)-based offloading for vehicular edge computing (VEC)<n>We classify and compare existing works based on learning paradigms (e.g., single-agent, multi-agent), system architectures (e.g., centralized, distributed, hierarchical), and optimization objectives (e.g., latency, energy, fairness)
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning.
By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization.
This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption.
arXiv Detail & Related papers (2024-11-08T05:58:09Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
In recent years, the integration of artificial intelligence (AI) and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications.
This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency.
arXiv Detail & Related papers (2023-04-26T15:38:00Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.