Stealing Creator's Workflow: A Creator-Inspired Agentic Framework with Iterative Feedback Loop for Improved Scientific Short-form Generation
- URL: http://arxiv.org/abs/2504.18805v1
- Date: Sat, 26 Apr 2025 05:22:35 GMT
- Title: Stealing Creator's Workflow: A Creator-Inspired Agentic Framework with Iterative Feedback Loop for Improved Scientific Short-form Generation
- Authors: Jong Inn Park, Maanas Taneja, Qianwen Wang, Dongyeop Kang,
- Abstract summary: SciTalk is a novel framework for grounding videos in various sources, such as text, figures, visual styles, and avatars.<n>Inspired by content creators' iterations, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing.<n>Our framework provides valuable insights into the challenges and benefits of feedback-driven video generation.
- Score: 20.571381061542766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating engaging, accurate short-form videos from scientific papers is challenging due to content complexity and the gap between expert authors and readers. Existing end-to-end methods often suffer from factual inaccuracies and visual artifacts, limiting their utility for scientific dissemination. To address these issues, we propose SciTalk, a novel multi-LLM agentic framework, grounding videos in various sources, such as text, figures, visual styles, and avatars. Inspired by content creators' workflows, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing, and incorporates an iterative feedback mechanism where video agents simulate user roles to give feedback on generated videos from previous iterations and refine generation prompts. Experimental evaluations show that SciTalk outperforms simple prompting methods in generating scientifically accurate and engaging content over the refined loop of video generation. Although preliminary results are still not yet matching human creators' quality, our framework provides valuable insights into the challenges and benefits of feedback-driven video generation. Our code, data, and generated videos will be publicly available.
Related papers
- VideoRAG: Retrieval-Augmented Generation over Video Corpus [57.68536380621672]
VideoRAG is a framework that dynamically retrieves videos based on their relevance with queries.<n>VideoRAG is powered by recent Large Video Language Models (LVLMs)<n>We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
arXiv Detail & Related papers (2025-01-10T11:17:15Z) - VideoDreamer: Customized Multi-Subject Text-to-Video Generation with Disen-Mix Finetuning on Language-Video Foundation Models [43.46536102838717]
VideoDreamer is a novel framework for customized multi-subject text-to-video generation.<n>It can generate temporally consistent text-guided videos that faithfully preserve the visual features of the given multiple subjects.
arXiv Detail & Related papers (2023-11-02T04:38:50Z) - Animate-A-Story: Storytelling with Retrieval-Augmented Video Generation [69.20173154096]
We develop a framework comprised of two functional modules, Motion Structure Retrieval and Structure-Guided Text-to-Video Synthesis.
For the first module, we leverage an off-the-shelf video retrieval system and extract video depths as motion structure.
For the second module, we propose a controllable video generation model that offers flexible controls over structure and characters.
arXiv Detail & Related papers (2023-07-13T17:57:13Z) - Make-Your-Video: Customized Video Generation Using Textual and
Structural Guidance [36.26032505627126]
Recent advancements in text-to-video synthesis have unveiled the potential to achieve this with prompts only.
In this paper, we explore customized video generation by utilizing text as context description and motion structure.
Our method, dubbed Make-Your-Video, involves joint-conditional video generation using a Latent Diffusion Model.
arXiv Detail & Related papers (2023-06-01T17:43:27Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
We propose verbalizing long videos to generate descriptions in natural language, then performing video-understanding tasks on the generated story as opposed to the original video.
Our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding.
To alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.
arXiv Detail & Related papers (2023-05-16T19:13:11Z) - Make-A-Protagonist: Generic Video Editing with An Ensemble of Experts [116.05656635044357]
We propose a generic video editing framework called Make-A-Protagonist.
Specifically, we leverage multiple experts to parse source video, target visual and textual clues, and propose a visual-textual-based video generation model.
Results demonstrate the versatile and remarkable editing capabilities of Make-A-Protagonist.
arXiv Detail & Related papers (2023-05-15T17:59:03Z) - Video Generation from Text Employing Latent Path Construction for
Temporal Modeling [70.06508219998778]
Video generation is one of the most challenging tasks in Machine Learning and Computer Vision fields of study.
In this paper, we tackle the text to video generation problem, which is a conditional form of video generation.
We believe that video generation from natural language sentences will have an important impact on Artificial Intelligence.
arXiv Detail & Related papers (2021-07-29T06:28:20Z) - Transcript to Video: Efficient Clip Sequencing from Texts [65.87890762420922]
We present Transcript-to-Video -- a weakly-supervised framework that uses texts as input to automatically create video sequences from an extensive collection of shots.
Specifically, we propose a Content Retrieval Module and a Temporal Coherent Module to learn visual-language representations and model shot sequencing styles.
For fast inference, we introduce an efficient search strategy for real-time video clip sequencing.
arXiv Detail & Related papers (2021-07-25T17:24:50Z) - A Good Image Generator Is What You Need for High-Resolution Video
Synthesis [73.82857768949651]
We present a framework that leverages contemporary image generators to render high-resolution videos.
We frame the video synthesis problem as discovering a trajectory in the latent space of a pre-trained and fixed image generator.
We introduce a motion generator that discovers the desired trajectory, in which content and motion are disentangled.
arXiv Detail & Related papers (2021-04-30T15:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.