Nystr\"om Kernel Mean Embeddings
- URL: http://arxiv.org/abs/2201.13055v1
- Date: Mon, 31 Jan 2022 08:26:06 GMT
- Title: Nystr\"om Kernel Mean Embeddings
- Authors: Antoine Chatalic, Nicolas Schreuder, Alessandro Rudi and Lorenzo
Rosasco
- Abstract summary: We propose an efficient approximation procedure based on the Nystr"om method.
It yields sufficient conditions on the subsample size to obtain the standard $n-1/2$ rate.
We discuss applications of this result for the approximation of the maximum mean discrepancy and quadrature rules.
- Score: 92.10208929236826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kernel mean embeddings are a powerful tool to represent probability
distributions over arbitrary spaces as single points in a Hilbert space. Yet,
the cost of computing and storing such embeddings prohibits their direct use in
large-scale settings. We propose an efficient approximation procedure based on
the Nystr\"om method, which exploits a small random subset of the dataset. Our
main result is an upper bound on the approximation error of this procedure. It
yields sufficient conditions on the subsample size to obtain the standard
$n^{-1/2}$ rate while reducing computational costs. We discuss applications of
this result for the approximation of the maximum mean discrepancy and
quadrature rules, and illustrate our theoretical findings with numerical
experiments.
Related papers
- Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via
Leverage Scores Sampling [16.992480926905067]
We consider the problem of approximating integrals with respect to a target probability measure using only pointwise evaluations of the integrand.
We propose an efficient procedure which exploits a small i.i.d. random subset of $mn$ samples drawn either uniformly or using approximate leverage scores from the initial observations.
arXiv Detail & Related papers (2023-11-22T17:44:18Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
In this paper, we study the problem of robust mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples.
We present a simple mean estimator that overcomes both challenges under moderate conditions.
Our method does not need any prior knowledge of the sparsity level $k$.
arXiv Detail & Related papers (2023-05-24T16:02:28Z) - Compressed Empirical Measures (in finite dimensions) [4.73194777046253]
We study approaches for compressing the empirical measure in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs)
A key quantity that controls how large such a coreset has to be is the size of the largest ball around the empirical measure that is contained within the empirical convex set.
arXiv Detail & Related papers (2022-04-19T12:25:41Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - One-Bit Compressed Sensing via One-Shot Hard Thresholding [7.594050968868919]
A problem of 1-bit compressed sensing is to estimate a sparse signal from a few binary measurements.
We present a novel and concise analysis that moves away from the widely used non-constrained notion of width.
arXiv Detail & Related papers (2020-07-07T17:28:03Z) - Debiasing Distributed Second Order Optimization with Surrogate Sketching
and Scaled Regularization [101.5159744660701]
In distributed second order optimization, a standard strategy is to average many local estimates, each of which is based on a small sketch or batch of the data.
Here, we introduce a new technique for debiasing the local estimates, which leads to both theoretical and empirical improvements in the convergence rate of distributed second order methods.
arXiv Detail & Related papers (2020-07-02T18:08:14Z) - RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces [14.924672048447334]
Large-scale finite-sum problems can be solved using efficient variants of Newton method, where the Hessian is approximated via sub-samples of data.
In this paper, we observe that for this class of problems, one can naturally use kernel approximation to speed up the Newton method.
We provide a novel second-order algorithm that enjoys local superlinear convergence and global linear convergence.
arXiv Detail & Related papers (2020-02-12T01:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.