Theoretical Framework for Tempered Fractional Gradient Descent: Application to Breast Cancer Classification
- URL: http://arxiv.org/abs/2504.18849v1
- Date: Sat, 26 Apr 2025 08:26:34 GMT
- Title: Theoretical Framework for Tempered Fractional Gradient Descent: Application to Breast Cancer Classification
- Authors: Omar Naifar,
- Abstract summary: This paper introduces Fractional Gradient Descent (TFGD), a novel optimization framework that synergizes fractional calculus with exponential tempering to enhance gradient-based learning.<n>TFGD addresses limitations by incorporating a tempered memory mechanism, where historical gradients are weighted by fractional coefficients $|w_j| = binomalphaj$ and exponentially decayed via a tempering parameter $lambda$.<n> Empirical validation on the Breast Cancer Wisconsin dataset demonstrates TFGD's superiority, achieving 98.25% test accuracy (vs. 92.11% for SGD) and 2$times$ faster convergence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces Tempered Fractional Gradient Descent (TFGD), a novel optimization framework that synergizes fractional calculus with exponential tempering to enhance gradient-based learning. Traditional gradient descent methods often suffer from oscillatory updates and slow convergence in high-dimensional, noisy landscapes. TFGD addresses these limitations by incorporating a tempered memory mechanism, where historical gradients are weighted by fractional coefficients $|w_j| = \binom{\alpha}{j}$ and exponentially decayed via a tempering parameter $\lambda$. Theoretical analysis establishes TFGD's convergence guarantees: in convex settings, it achieves an $\mathcal{O}(1/K)$ rate with alignment coefficient $d_{\alpha,\lambda} = (1 - e^{-\lambda})^{-\alpha}$, while stochastic variants attain $\mathcal{O}(1/k^\alpha)$ error decay. The algorithm maintains $\mathcal{O}(n)$ time complexity equivalent to SGD, with memory overhead scaling as $\mathcal{O}(d/\lambda)$ for parameter dimension $d$. Empirical validation on the Breast Cancer Wisconsin dataset demonstrates TFGD's superiority, achieving 98.25\% test accuracy (vs. 92.11\% for SGD) and 2$\times$ faster convergence. The tempered memory mechanism proves particularly effective in medical classification tasks, where feature correlations benefit from stable gradient averaging. These results position TFGD as a robust alternative to conventional optimizers in both theoretical and applied machine learning.
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.<n>In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - Modified Step Size for Enhanced Stochastic Gradient Descent: Convergence
and Experiments [0.0]
This paper introduces a novel approach to the performance of the gradient descent (SGD) algorithm by incorporating a modified decay step size based on $frac1sqrttt.
The proposed step size integrates a logarithmic step term, leading to the selection of smaller values in the final iteration.
To the effectiveness of our approach, we conducted numerical experiments on image classification tasks using the FashionMNIST, andARAR datasets.
arXiv Detail & Related papers (2023-09-03T19:21:59Z) - CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence [9.11726703830074]
In this paper, we consider solving the distributed optimization problem under the communication restricted setting.
We show the method over com-pressed exact diffusion termed CEDAS"
In particular, when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when when
arXiv Detail & Related papers (2023-01-14T09:49:15Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an
Exponential Convergence Rate [0.0]
This paper designs a novel underlineMemory underlineStochastic sunderlineTratified Gradient Descend(underlineMSTGD) algorithm with an exponential convergence rate.
Specifically, MSTGD uses two strategies for variance reduction: the first strategy is to perform variance reduction according to the proportion p of used historical gradient.
Unlike most other algorithms that claim to achieve an exponential convergence rate, the convergence rate is independent of parameters such as dataset size N, batch size n, etc.
arXiv Detail & Related papers (2022-02-21T01:36:26Z) - Improving the Transient Times for Distributed Stochastic Gradient
Methods [5.215491794707911]
We study a distributed gradient algorithm, called exact diffusion adaptive stepsizes (EDAS)
We show EDAS achieves the same network independent convergence rate as centralized gradient descent (SGD)
To the best of our knowledge, EDAS achieves the shortest time when the average of the $n$ cost functions is strongly convex.
arXiv Detail & Related papers (2021-05-11T08:09:31Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
We propose a new technique, em variance controlled gradient (VCSG), to improve the performance of the reduced gradient (SVRG)
$lambda$ is introduced in VCSG to avoid over-reducing a variance by SVRG.
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ number of gradient evaluations, which improves the leading gradient complexity.
arXiv Detail & Related papers (2021-02-19T12:22:56Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Differentially Quantized Gradient Methods [53.3186247068836]
We show that Differentially Quantized Gradient Descent (DQ-GD) attains a linear contraction factor of $maxsigma_mathrmGD, rhon 2-R$.
No algorithm within a certain class can converge faster than $maxsigma_mathrmGD, 2-R$.
arXiv Detail & Related papers (2020-02-06T20:40:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.