Approximating Nash Equilibria in General-Sum Games via Meta-Learning
- URL: http://arxiv.org/abs/2504.18868v1
- Date: Sat, 26 Apr 2025 09:33:50 GMT
- Title: Approximating Nash Equilibria in General-Sum Games via Meta-Learning
- Authors: David Sychrovský, Christopher Solinas, Revan MacQueen, Kevin Wang, James R. Wright, Nathan R. Sturtevant, Michael Bowling,
- Abstract summary: We use meta-learning to minimize correlations in strategies produced by a regret minimizer.<n>Our algorithms provide significantly better approximations of Nash equilibria than state-of-the-art regret minimization techniques.
- Score: 18.688759383834345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nash equilibrium is perhaps the best-known solution concept in game theory. Such a solution assigns a strategy to each player which offers no incentive to unilaterally deviate. While a Nash equilibrium is guaranteed to always exist, the problem of finding one in general-sum games is PPAD-complete, generally considered intractable. Regret minimization is an efficient framework for approximating Nash equilibria in two-player zero-sum games. However, in general-sum games, such algorithms are only guaranteed to converge to a coarse-correlated equilibrium (CCE), a solution concept where players can correlate their strategies. In this work, we use meta-learning to minimize the correlations in strategies produced by a regret minimizer. This encourages the regret minimizer to find strategies that are closer to a Nash equilibrium. The meta-learned regret minimizer is still guaranteed to converge to a CCE, but we give a bound on the distance to Nash equilibrium in terms of our meta-loss. We evaluate our approach in general-sum imperfect information games. Our algorithms provide significantly better approximations of Nash equilibria than state-of-the-art regret minimization techniques.
Related papers
- Meta-Learning in Self-Play Regret Minimization [10.843705580746397]
We present a general approach to online optimization which plays a crucial role in many algorithms for approximating Nash equilibria in two-player zero-sum games.<n>We build upon this, extending the framework to the more challenging self-play setting, which is the basis for most state-of-the-art equilibrium approximation algorithms.<n>Our meta-learned algorithms considerably outperform other state-of-the-art regret minimization algorithms.
arXiv Detail & Related papers (2025-04-26T13:27:24Z) - On Tractable $Φ$-Equilibria in Non-Concave Games [53.212133025684224]
We study tractable $Phi$-equilibria in non-concave games.<n>We show that when $Phi$ is finite, there exists an efficient uncoupled learning algorithm that converges to the corresponding $Phi$-equilibria.
arXiv Detail & Related papers (2024-03-13T01:51:30Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - Differentiable Arbitrating in Zero-sum Markov Games [59.62061049680365]
We study how to perturb the reward in a zero-sum Markov game with two players to induce a desirable Nash equilibrium, namely arbitrating.
The lower level requires solving the Nash equilibrium under a given reward function, which makes the overall problem challenging to optimize in an end-to-end way.
We propose a backpropagation scheme that differentiates through the Nash equilibrium, which provides the gradient feedback for the upper level.
arXiv Detail & Related papers (2023-02-20T16:05:04Z) - ApproxED: Approximate exploitability descent via learned best responses [61.17702187957206]
We study the problem of finding an approximate Nash equilibrium of games with continuous action sets.
We propose two new methods that minimize an approximation of exploitability with respect to the strategy profile.
arXiv Detail & Related papers (2023-01-20T23:55:30Z) - Regret Minimization and Convergence to Equilibria in General-sum Markov
Games [57.568118148036376]
We present the first algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents.
Our algorithm is decentralized, computationally efficient, and does not require any communication between agents.
arXiv Detail & Related papers (2022-07-28T16:27:59Z) - Safe Equilibrium [1.7132914341329848]
The standard game-theoretic solution concept, Nash equilibrium, assumes that all players behave rationally.
We propose a new solution concept called safe equilibrium that models opponents as behaving rationally with a specified probability.
We prove that a safe equilibrium exists in all strategic-form games, and prove that its computation is PPAD-hard.
arXiv Detail & Related papers (2022-01-12T01:45:51Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Learning to Compute Approximate Nash Equilibrium for Normal-form Games [15.321036952379488]
We propose a general meta learning approach to computing approximate Nash equilibrium for finite $n$-player normal-form games.
Unlike existing solutions that approximate or learn a Nash equilibrium from scratch for each of the games, our meta solver directly constructs a mapping from a game utility matrix to a joint strategy profile.
arXiv Detail & Related papers (2021-08-17T07:06:46Z) - Model-Free Online Learning in Unknown Sequential Decision Making
Problems and Games [114.90723492840499]
In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium.
We formalize an online learning setting in which the strategy space is not known to the agent.
We give an efficient algorithm that achieves $O(T3/4)$ regret with high probability for that setting, even when the agent faces an adversarial environment.
arXiv Detail & Related papers (2021-03-08T04:03:24Z) - No-regret learning and mixed Nash equilibria: They do not mix [64.37511607254115]
We study the dynamics of "follow-the-regularized-leader" (FTRL)
We show that any Nash equilibrium which is not strict cannot be stable and attracting under FTRL.
This result has significant implications for predicting the outcome of a learning process.
arXiv Detail & Related papers (2020-10-19T13:49:06Z) - Learning Zero-Sum Simultaneous-Move Markov Games Using Function
Approximation and Correlated Equilibrium [116.56359444619441]
We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games.
In the offline setting, we control both players and aim to find the Nash Equilibrium by minimizing the duality gap.
In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret.
arXiv Detail & Related papers (2020-02-17T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.