論文の概要: WLTCL: Wide Field-of-View 3-D LiDAR Truck Compartment Automatic Localization System
- arxiv url: http://arxiv.org/abs/2504.18870v1
- Date: Sat, 26 Apr 2025 09:35:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.027221
- Title: WLTCL: Wide Field-of-View 3-D LiDAR Truck Compartment Automatic Localization System
- Title(参考訳): WLTCL:広視野3次元LiDARトラック比較自動位置決めシステム
- Authors: Guodong Sun, Mingjing Li, Dingjie Liu, Mingxuan Liu, Bo Wu, Yang Zhang,
- Abstract要約: 広視野3次元LiDAR車両コンパートメント自動位置決めシステムを提案する。
様々な大きさの車両に対して、このシステムはLiDARを利用して広い視野範囲で高密度の点雲を生成する。
コンパートメントキーポイント位置決めアルゴリズムは、コンパートメントの幾何学的特徴を利用して、コーナーポイントを正確に特定する。
- 参考スコア(独自算出の注目度): 9.07574138083974
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As an essential component of logistics automation, the automated loading system is becoming a critical technology for enhancing operational efficiency and safety. Precise automatic positioning of the truck compartment, which serves as the loading area, is the primary step in automated loading. However, existing methods have difficulty adapting to truck compartments of various sizes, do not establish a unified coordinate system for LiDAR and mobile manipulators, and often exhibit reliability issues in cluttered environments. To address these limitations, our study focuses on achieving precise automatic positioning of key points in large, medium, and small fence-style truck compartments in cluttered scenarios. We propose an innovative wide field-of-view 3-D LiDAR vehicle compartment automatic localization system. For vehicles of various sizes, this system leverages the LiDAR to generate high-density point clouds within an extensive field-of-view range. By incorporating parking area constraints, our vehicle point cloud segmentation method more effectively segments vehicle point clouds within the scene. Our compartment key point positioning algorithm utilizes the geometric features of the compartments to accurately locate the corner points, providing stackable spatial regions. Extensive experiments on our collected data and public datasets demonstrate that this system offers reliable positioning accuracy and reduced computational resource consumption, leading to its application and promotion in relevant fields.
- Abstract(参考訳): 自動装填システムは, 物流自動化の不可欠な要素として, 運転効率と安全性を高めるための重要な技術になりつつある。
ローディングエリアとして機能するトラックコンパートメントの正確な自動位置決めは、自動ローディングの第一ステップである。
しかし、既存の手法では、様々な大きさのトラックコンパートメントへの適応が困難であり、LiDARと移動マニピュレータの統一座標系を確立せず、しばしば散在した環境で信頼性の問題を示す。
これらの制約に対処するため,大規模,中小のフェンス式トラックコンパートメントにおいて,キーポイントの自動位置決めを高精度に行うことに焦点を当てた。
広視野3次元LiDAR車両コンパートメント自動位置決めシステムを提案する。
様々な大きさの車両に対して、このシステムはLiDARを利用して広い視野範囲で高密度の点雲を生成する。
駐車場の制約を組み込むことで,車内の車点雲をより効果的にセグメント化することができる。
コンパートメントキーポイント位置決めアルゴリズムは,コンパートメントの幾何学的特徴を利用して,角点を正確に検出し,積み重ね可能な空間領域を提供する。
収集したデータと公開データセットの大規模な実験により、このシステムは信頼性の高い位置決め精度と計算資源消費の低減を提供し、関連する分野への応用と促進につながった。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
本研究では,複数のLiDARシステムの必要性を緩和し,無駄な3Dアノテーションプロセスを簡単にする,革新的なフレームワークを提案する。
2次元境界箱検出と抽出された高さ情報を用いて,人間の介入なしに3次元境界箱を自動的に生成することができる。
論文 参考訳(メタデータ) (2024-01-13T01:22:20Z) - A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection [0.23020018305241333]
本稿では,12種類の自動車部品を検出するため,84,162枚の画像からなる大規模できめ細かな自動車データセットを提案する。
手動アノテーションの負担を軽減するため,新しい半教師付き自動ラベリング手法を提案する。
また,ゼロショットラベリングにおけるグラウンディングDINOアプローチの限界についても検討する。
論文 参考訳(メタデータ) (2023-11-20T13:30:42Z) - Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development [10.78971892551972]
LiSV-3DLaneは大規模な3Dレーンデータセットで、20kフレームのサラウンドビューのLiDAR点雲と豊富なセマンティックアノテーションから構成される。
本稿では,LiDARを用いた新しい3次元車線検出モデルLiLaDetを提案し,LiDAR点雲の空間的幾何学的学習をBird's Eye View (BEV) に基づく車線識別に取り入れた。
論文 参考訳(メタデータ) (2023-09-24T09:58:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
本稿では,自動車用レーダセンサの自動校正手法を提案する。
本手法では, 車両の外部改造を必要とせず, 自動走行車から得られる位置情報を利用する。
実地試験場からのデータを評価した結果,インフラセンサを自動で正確に校正できることが判明した。
論文 参考訳(メタデータ) (2023-06-23T07:01:10Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
本稿では,3つのコンポーネントから構成される新しい3次元オブジェクト検出フレームワークを提案する。
実験結果と帯域使用量分析により,本手法は通信コストと計算コストを削減できることを示した。
論文 参考訳(メタデータ) (2022-05-24T07:17:32Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
本稿では,ポイントクラウド領域における効果的な単視分割フレームワークとして機能する動的シフトネットワーク(DS-Net)を提案する。
提案するDS-Netは,両タスクの現在の最先端手法よりも優れた精度を実現する。
DS-Netを4次元パノプティカルLiDARセグメンテーションに拡張し、一列のLiDARフレーム上で時間的に統一されたインスタンスクラスタリングを行う。
論文 参考訳(メタデータ) (2022-03-14T15:25:42Z) - High-level camera-LiDAR fusion for 3D object detection with machine
learning [0.0]
本稿では,自律運転などの応用において重要な3次元物体検出問題に取り組む。
モノクロカメラとLiDARデータを組み合わせた機械学習パイプラインを使用して、動くプラットフォームの周囲の3D空間内の車両を検出する。
本結果は,検証セットに対して効率よく精度の高い推定を行い,全体の精度は87.1%となった。
論文 参考訳(メタデータ) (2021-05-24T01:57:34Z) - Depth Sensing Beyond LiDAR Range [84.19507822574568]
小型の視野カメラを用いた3カメラシステムを提案する。
我々のシステムは、計量深度を計算するための新しいアルゴリズムとともに、完全な事前校正を必要としない。
遠距離のシーンや物体に対して、事実上許容できる精度で密集した深度マップを出力することができる。
論文 参考訳(メタデータ) (2020-04-07T00:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。