論文の概要: TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation
- arxiv url: http://arxiv.org/abs/2504.18878v1
- Date: Sat, 26 Apr 2025 09:53:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.030453
- Title: TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation
- Title(参考訳): TSRM - 時系列予測とインプットのための軽量な時間的特徴符号化アーキテクチャ
- Authors: Robert Leppich, Michael Stenger, Daniel Grillmeyer, Vanessa Borst, Samuel Kounev,
- Abstract要約: 本稿では時系列予測と計算のための時系列表現モデル(TSRM)と呼ばれる時間的特徴符号化アーキテクチャを提案する。
アーキテクチャはCNNベースの表現層を中心に構成されており、それぞれが独立した表現学習タスクに特化している。
アーキテクチャは基本的に、Transformerエンコーダにインスパイアされた構成に基づいており、そのコアに自己保持機構がある。
- 参考スコア(独自算出の注目度): 1.7819099868722776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a temporal feature encoding architecture called Time Series Representation Model (TSRM) for multivariate time series forecasting and imputation. The architecture is structured around CNN-based representation layers, each dedicated to an independent representation learning task and designed to capture diverse temporal patterns, followed by an attention-based feature extraction layer and a merge layer, designed to aggregate extracted features. The architecture is fundamentally based on a configuration that is inspired by a Transformer encoder, with self-attention mechanisms at its core. The TSRM architecture outperforms state-of-the-art approaches on most of the seven established benchmark datasets considered in our empirical evaluation for both forecasting and imputation tasks. At the same time, it significantly reduces complexity in the form of learnable parameters. The source code is available at https://github.com/RobertLeppich/TSRM.
- Abstract(参考訳): 多変量時系列予測および計算のための時系列表現モデル(TSRM)と呼ばれる時間的特徴符号化アーキテクチャを導入する。
アーキテクチャはCNNベースの表現層を中心に構成されており、それぞれが独立した表現学習タスクに特化しており、多様な時間パターンをキャプチャするために設計されている。
アーキテクチャは基本的に、Transformerエンコーダにインスパイアされた構成に基づいており、そのコアに自己保持機構がある。
TSRMアーキテクチャは、予測タスクと計算タスクの両方に対する実証的な評価において考慮された7つの確立されたベンチマークデータセットのほとんどにおいて、最先端のアプローチよりも優れている。
同時に、学習可能なパラメータの形での複雑さを著しく低減します。
ソースコードはhttps://github.com/RobertLeppich/TSRMで公開されている。
関連論文リスト
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Time Series Representation Models [2.724184832774005]
時系列解析は、そのスパース特性、高次元性、一貫性のないデータ品質のため、依然として大きな課題である。
近年のトランス技術の発展により,予測や計算能力が向上している。
イントロスペクションに基づく時系列解析のための新しいアーキテクチャ概念を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:25:31Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - TMS: A Temporal Multi-scale Backbone Design for Speaker Embedding [60.292702363839716]
話者埋め込みのための現在のSOTAバックボーンネットワークは、話者表現のためのマルチブランチネットワークアーキテクチャを用いた発話からマルチスケール特徴を集約するように設計されている。
本稿では, 話者埋め込みネットワークにおいて, 計算コストの増大を伴わずに, マルチスケール分岐を効率的に設計できる効果的な時間的マルチスケール(TMS)モデルを提案する。
論文 参考訳(メタデータ) (2022-03-17T05:49:35Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlionは時系列のためのオープンソースの機械学習ライブラリである。
モデルの統一インターフェースと、異常検出と予測のためのデータセットを備えている。
Merlionはまた、本番環境でのモデルのライブデプロイメントと再トレーニングをシミュレートするユニークな評価フレームワークも提供する。
論文 参考訳(メタデータ) (2021-09-20T02:03:43Z) - TAM: Temporal Adaptive Module for Video Recognition [60.83208364110288]
時間適応モジュール(bf TAM)は、自身の特徴マップに基づいてビデオ固有の時間カーネルを生成する。
Kinetics-400およびSomethingデータセットの実験は、我々のTAMが他の時間的モデリング手法より一貫して優れていることを示した。
論文 参考訳(メタデータ) (2020-05-14T08:22:45Z) - ForecastNet: A Time-Variant Deep Feed-Forward Neural Network
Architecture for Multi-Step-Ahead Time-Series Forecasting [6.043572971237165]
本稿では,フィードフォワードアーキテクチャを用いて時間変動モデルを提供するForecastNetを提案する。
ForecastNetは、いくつかのデータセットで統計的およびディープラーニングベンチマークモデルを上回るパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-02-11T01:03:33Z) - Stacked Boosters Network Architecture for Short Term Load Forecasting in
Buildings [0.0]
本稿では,建築エネルギー負荷の短期的負荷予測のための新しいディープラーニングアーキテクチャを提案する。
このアーキテクチャは、単純なベースラーナーと、単一のディープニューラルネットワークとしてモデル化された複数のブースティングシステムに基づいている。
このアーキテクチャは、フィンランドのオフィスビルのエネルギーデータを用いて、短期的な負荷予測タスクで評価される。
論文 参考訳(メタデータ) (2020-01-23T08:35:36Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。