論文の概要: UnifyFL: Enabling Decentralized Cross-Silo Federated Learning
- arxiv url: http://arxiv.org/abs/2504.18916v2
- Date: Tue, 06 May 2025 03:37:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 14:45:09.34957
- Title: UnifyFL: Enabling Decentralized Cross-Silo Federated Learning
- Title(参考訳): UnifyFL: 分散型クロスサイロ・フェデレーションラーニングの実現
- Authors: Sarang S, Druva Dhakshinamoorthy, Aditya Shiva Sharma, Yuvraj Singh Bhadauria, Siddharth Chaitra Vivek, Arihant Bansal, Arnab K. Paul,
- Abstract要約: We developed a trust-based cross-silo Federated Learning framework called UnifyFL。
多様なテストベッドを用いた評価の結果,UnifyFLは理想的なマルチレベル集中型FLに匹敵する性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a decentralized machine learning (ML) paradigm in which models are trained on private data across several devices called clients and combined at a single node called an aggregator rather than aggregating the data itself. Many organizations employ FL to have better privacy-aware ML-driven decision-making capabilities. However, organizations often operate independently rather than collaborate to enhance their FL capabilities due to the lack of an effective mechanism for collaboration. The challenge lies in balancing trust and resource efficiency. One approach relies on trusting a third-party aggregator to consolidate models from all organizations (multilevel FL), but this requires trusting an entity that may be biased or unreliable. Alternatively, organizations can bypass a third party by sharing their local models directly, which requires significant computational resources for validation. Both approaches reflect a fundamental trade-off between trust and resource constraints, with neither offering an ideal solution. In this work, we develop a trust-based cross-silo FL framework called UnifyFL, which uses decentralized orchestration and distributed storage. UnifyFL provides flexibility to the participating organizations and presents synchronous and asynchronous modes to handle stragglers. Our evaluation on a diverse testbed shows that UnifyFL achieves a performance comparable to the ideal multilevel centralized FL while allowing trust and optimal use of resources.
- Abstract(参考訳): Federated Learning(FL)は、クライアントと呼ばれる複数のデバイスにまたがるプライベートデータに基づいてモデルをトレーニングし、データ自体を集約するのではなく、アグリゲータと呼ばれる単一のノードで結合する、分散機械学習(ML)パラダイムである。
多くの組織は、プライバシーを意識したMLによる意思決定機能を改善するためにFLを使用している。
しかしながら、コラボレーションのための効果的なメカニズムが欠如しているため、組織はFL機能を強化するために協力するよりも、独立して活動することが多い。
課題は、信頼とリソース効率のバランスにある。
1つのアプローチは、すべての組織(マルチレベルFL)からモデルを統合するために、サードパーティのアグリゲータを信頼することに依存しています。
あるいは、ローカルモデルを直接共有することで、第三者をバイパスすることができる。
どちらのアプローチも、信頼とリソースの制約の根本的なトレードオフを反映しており、どちらも理想的なソリューションを提供していません。
本研究では,分散型オーケストレーションと分散ストレージを用いた信頼ベースのクロスサイロFLフレームワークUnifyFLを開発した。
UnifyFLは参加する組織に柔軟性を提供し、ストラグラーを扱うための同期モードと非同期モードを提供する。
多様なテストベッドを用いた評価の結果,UnifyFLはリソースの信頼性と最適利用を可能としながら,理想的なマルチレベル集中型FLに匹敵する性能を実現していることがわかった。
関連論文リスト
- FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
フェデレートラーニング(FL)は、分散データソースを持つ複数のクライアントが、データのプライバシを損なうことなく、共同で共有モデルをトレーニングすることを可能にする。
我々は、モデルの不均一性と非同期学習をサポートする完全分散pFLアルゴリズムであるFederated Peer-Adaptive Ensemble Learning (FedPAE)を紹介する。
提案手法では,ピアツーピアモデル共有機構とアンサンブル選択を用いて,局所情報とグローバル情報とのより洗練されたバランスを実現する。
論文 参考訳(メタデータ) (2024-10-17T22:47:19Z) - A Framework for testing Federated Learning algorithms using an edge-like environment [0.0]
フェデレーテッド・ラーニング(FL)は、多くのクライアントが、データをプライベートかつ分散化しながら、単一の集中型モデルを協調的にトレーニングする機械学習パラダイムである。
グローバル集中型モデルアグリゲーションにおける局所モデルの貢献を正確に評価するのは簡単ではない。
これはFLにおける大きな挑戦の例であり、一般にデータ不均衡またはクラス不均衡として知られている。
本研究では,FLアルゴリズムをより容易かつスケーラブルに評価するためのフレームワークを提案し,実装した。
論文 参考訳(メタデータ) (2024-07-17T19:52:53Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
異種環境におけるAEDFL(Asynchronous Efficient Decentralized FL framework)を提案する。
まず、FL収束を改善するための効率的なモデル集約手法を用いた非同期FLシステムモデルを提案する。
次に,より優れた精度を実現するために,動的安定化を考慮したモデル更新手法を提案する。
第3に,通信コストと計算コストを大幅に削減する適応スパース学習法を提案する。
論文 参考訳(メタデータ) (2023-12-18T05:18:17Z) - A Survey on Decentralized Federated Learning [0.709016563801433]
近年、フェデレーション学習は、分散、大規模、プライバシ保護機械学習(ML)システムのトレーニングにおいて一般的なパラダイムとなっている。
典型的なFLシステムでは、中央サーバはオーケストレータとしてのみ機能し、各クライアントによって訓練されたすべてのローカルモデルを、収束するまで反復的に収集し集約する。
最も重要な課題の1つは、古典的なFLクライアントサーバアーキテクチャの集中的なオーケストレーションを克服することである。
すべてのFLクライアントが中央サーバなしで協力し、通信する分散FLソリューションが登場しました。
論文 参考訳(メタデータ) (2023-08-08T22:07:15Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network [19.23943687834319]
フェデレートラーニング(FL)は、将来性のあるプライバシ保護分散機械学習フレームワークとして登場した。
我々は、Fed-FSNetと呼ばれる新しいFLトレーニングフレームワークを提案し、Fed-FSNet(Fed-FSNet)を適切に設計し、非I.I.D.のオープンソース問題を軽減する。
論文 参考訳(メタデータ) (2022-08-21T18:40:51Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z) - Multi-Center Federated Learning [62.32725938999433]
フェデレートラーニング(FL)は、分散ラーニングにおけるデータのプライバシを保護する。
単にデータにアクセスせずに、ユーザーからローカルな勾配を収集するだけだ。
本稿では,新しいマルチセンターアグリゲーション機構を提案する。
論文 参考訳(メタデータ) (2021-08-19T12:20:31Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。