Deep Learning-Based Multi-Modal Fusion for Robust Robot Perception and Navigation
- URL: http://arxiv.org/abs/2504.19002v1
- Date: Sat, 26 Apr 2025 19:04:21 GMT
- Title: Deep Learning-Based Multi-Modal Fusion for Robust Robot Perception and Navigation
- Authors: Delun Lai, Yeyubei Zhang, Yunchong Liu, Chaojie Li, Huadong Mo,
- Abstract summary: This paper introduces a novel deep learning-based multimodal fusion architecture aimed at enhancing the perception capabilities of autonomous navigation robots.<n>By utilizing innovative feature extraction modules, adaptive fusion strategies, and time-series modeling mechanisms, the system effectively integrates RGB images and LiDAR data.
- Score: 1.71849622776539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel deep learning-based multimodal fusion architecture aimed at enhancing the perception capabilities of autonomous navigation robots in complex environments. By utilizing innovative feature extraction modules, adaptive fusion strategies, and time-series modeling mechanisms, the system effectively integrates RGB images and LiDAR data. The key contributions of this work are as follows: a. the design of a lightweight feature extraction network to enhance feature representation; b. the development of an adaptive weighted cross-modal fusion strategy to improve system robustness; and c. the incorporation of time-series information modeling to boost dynamic scene perception accuracy. Experimental results on the KITTI dataset demonstrate that the proposed approach increases navigation and positioning accuracy by 3.5% and 2.2%, respectively, while maintaining real-time performance. This work provides a novel solution for autonomous robot navigation in complex environments.
Related papers
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
We propose a Faster LiDAR 3D object detection framework, called FASD, which implements heterogeneous model distillation by adaptively uniform cross-model voxel features.
We aim to distill the transformer's capacity for high-performance sequence modeling into Mamba models with low FLOPs, achieving a significant improvement in accuracy through knowledge transfer.
We evaluated the framework on datasets and nuScenes, achieving a 4x reduction in resource consumption and a 1-2% performance improvement over the current SoTA methods.
arXiv Detail & Related papers (2024-09-17T09:30:43Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Research on Autonomous Robots Navigation based on Reinforcement Learning [13.559881645869632]
We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process.
We have verified the effectiveness and robustness of these models in various complex scenarios.
arXiv Detail & Related papers (2024-07-02T00:44:06Z) - X Modality Assisting RGBT Object Tracking [1.730147049648545]
A novel X Modality Assisting Network (X-Net) is introduced, which explores the impact of the fusion paradigm by decoupling visual object tracking into three distinct levels.<n>X-Net achieves performance gains of 0.47%/1.2% in the average of precise rate and success rate.
arXiv Detail & Related papers (2023-12-27T05:38:54Z) - Enhancing Navigation Benchmarking and Perception Data Generation for
Row-based Crops in Simulation [0.3518016233072556]
This paper presents a synthetic dataset to train semantic segmentation networks and a collection of virtual scenarios for a fast evaluation of navigation algorithms.
An automatic parametric approach is developed to explore different field geometries and features.
The simulation framework and the dataset have been evaluated by training a deep segmentation network on different crops and benchmarking the resulting navigation.
arXiv Detail & Related papers (2023-06-27T14:46:09Z) - PIC4rl-gym: a ROS2 modular framework for Robots Autonomous Navigation
with Deep Reinforcement Learning [0.4588028371034407]
This work introduces the textitPIC4rl-gym, a fundamental modular framework to enhance navigation and learning research.
The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios.
A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models.
arXiv Detail & Related papers (2022-11-19T14:58:57Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.