Research on Autonomous Robots Navigation based on Reinforcement Learning
- URL: http://arxiv.org/abs/2407.02539v3
- Date: Wed, 14 Aug 2024 04:49:22 GMT
- Title: Research on Autonomous Robots Navigation based on Reinforcement Learning
- Authors: Zixiang Wang, Hao Yan, Yining Wang, Zhengjia Xu, Zhuoyue Wang, Zhizhong Wu,
- Abstract summary: We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process.
We have verified the effectiveness and robustness of these models in various complex scenarios.
- Score: 13.559881645869632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.
Related papers
- Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
We introduce goal-conditioned autoregressive models to generate crowd behaviors, capturing intricate interactions among individuals.
The model processes potential robot trajectory samples and predicts the reactions of surrounding individuals, enabling proactive robotic navigation in complex scenarios.
arXiv Detail & Related papers (2024-08-07T14:32:41Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment.
The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles.
arXiv Detail & Related papers (2024-05-25T15:08:36Z) - SELFI: Autonomous Self-Improvement with Reinforcement Learning for Social Navigation [54.97931304488993]
Self-improving robots that interact and improve with experience are key to the real-world deployment of robotic systems.
We propose an online learning method, SELFI, that leverages online robot experience to rapidly fine-tune pre-trained control policies.
We report improvements in terms of collision avoidance, as well as more socially compliant behavior, measured by a human user study.
arXiv Detail & Related papers (2024-03-01T21:27:03Z) - Back-stepping Experience Replay with Application to Model-free Reinforcement Learning for a Soft Snake Robot [15.005962159112002]
Back-stepping Experience Replay (BER) is compatible with arbitrary off-policy reinforcement learning algorithms.
We present an application of BER in a model-free RL approach for the locomotion and navigation of a soft snake robot.
arXiv Detail & Related papers (2024-01-21T02:17:16Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
This study presents a comparative analysis between single-objective and multi-objective reinforcement learning methods for training a robot to navigate effectively to an end goal.
By modifying the reward function to return a vector of rewards, each pertaining to a distinct objective, the robot learns a policy that effectively balances the different goals.
arXiv Detail & Related papers (2023-12-13T08:00:26Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Robot path planning using deep reinforcement learning [0.0]
Reinforcement learning methods offer an alternative to map-free navigation tasks.
Deep reinforcement learning agents are implemented for both the obstacle avoidance and the goal-oriented navigation task.
An analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
arXiv Detail & Related papers (2023-02-17T20:08:59Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
We present a new meta-learning method that allows robots to quickly adapt to changes in dynamics.
Our method significantly improves adaptation to changes in dynamics in high noise settings.
We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics.
arXiv Detail & Related papers (2020-03-02T22:56:27Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.