Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning
- URL: http://arxiv.org/abs/2504.19103v1
- Date: Sun, 27 Apr 2025 04:38:49 GMT
- Title: Harmonizing Generalization and Personalization in Ring-topology Decentralized Federated Learning
- Authors: Shunxin Guo, Jiaqi Lv, Xin Geng,
- Abstract summary: We introduce Ring-topology Decentralized Federated Learning (RDFL) for distributed model training, aiming to avoid the inherent risks of centralized failure in server-based FL.<n>RDFL faces the challenge of low information-sharing efficiency due to the point-to-point communication manner when handling inherent data heterogeneity.<n>We propose a Divide-and-conquer RDFL framework (DRDFL) that uses a feature generation model to extract personalized information and invariant shared knowledge from the underlying data distribution.
- Score: 41.4210010333948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Ring-topology Decentralized Federated Learning (RDFL) for distributed model training, aiming to avoid the inherent risks of centralized failure in server-based FL. However, RDFL faces the challenge of low information-sharing efficiency due to the point-to-point communication manner when handling inherent data heterogeneity. Existing studies to mitigate data heterogeneity focus on personalized optimization of models, ignoring that the lack of shared information constraints can lead to large differences among models, weakening the benefits of collaborative learning. To tackle these challenges, we propose a Divide-and-conquer RDFL framework (DRDFL) that uses a feature generation model to extract personalized information and invariant shared knowledge from the underlying data distribution, ensuring both effective personalization and strong generalization. Specifically, we design a \textit{PersonaNet} module that encourages class-specific feature representations to follow a Gaussian mixture distribution, facilitating the learning of discriminative latent representations tailored to local data distributions. Meanwhile, the \textit{Learngene} module is introduced to encapsulate shared knowledge through an adversarial classifier to align latent representations and extract globally invariant information. Extensive experiments demonstrate that DRDFL outperforms state-of-the-art methods in various data heterogeneity settings.
Related papers
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Personalized Federated Learning via Gradient Modulation for
Heterogeneous Text Summarization [21.825321314169642]
We propose a federated learning text summarization scheme, which allows users to share the global model in a cooperative learning manner without sharing raw data.
FedSUMM can achieve faster model convergence on PFL algorithm for task-specific text summarization.
arXiv Detail & Related papers (2023-04-23T03:18:46Z) - Exploiting Personalized Invariance for Better Out-of-distribution
Generalization in Federated Learning [13.246981646250518]
This paper presents a general dual-regularized learning framework to explore the personalized invariance, compared with the exsiting personalized federated learning methods.
We show that our method is superior over the existing federated learning and invariant learning methods, in diverse out-of-distribution and Non-IID data cases.
arXiv Detail & Related papers (2022-11-21T08:17:03Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Heterogeneous Target Speech Separation [52.05046029743995]
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts.
Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts.
arXiv Detail & Related papers (2022-04-07T17:14:20Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.